
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

SimEDC: A Simulator for the Reliability Analysis
of Erasure-Coded Data Centers

Mi Zhang, Shujie Han, and Patrick P. C. Lee

Abstract—Modern data centers employ erasure coding to protect data storage against failures. Given the hierarchical nature of data
centers, characterizing the effects of erasure coding and redundancy placement on the reliability of erasure-coded data centers is critical
yet unexplored. This paper presents a discrete-event simulator called SIMEDC, which enables us to conduct a comprehensive simulation
analysis of reliability on erasure-coded data centers. SIMEDC reports reliability metrics of an erasure-coded data center based on the
configurable inputs of the data center topology, erasure codes, redundancy placement, and failure/repair patterns of different subsystems
obtained from statistical models or production traces. It can further accelerate the simulation analysis via importance sampling. Our
simulation analysis based on SIMEDC shows that placing erasure-coded data in fewer racks generally improves reliability by reducing
cross-rack repair traffic, even though it sacrifices rack-level fault tolerance in the face of correlated failures.

F

1 INTRODUCTION

Modern data centers enable large-scale storage management
for cloud computing services and big data analytics. How-
ever, extensive field measurements have shown that failures,
either transient or permanent, are commonplace in data
centers [10], [27], [32]. To protect data storage against failures,
modern data centers (e.g., [10], [18], [23]) adopt erasure coding
to add redundancy into data storage, so that any unavailable
or lost data can be recovered from other available redundant
data. Erasure coding provides a storage-efficient way to
construct redundancy in data storage, and provably incurs
much lower storage redundancy than simple replication [37].
Its storage efficiency over replication also implies significant
savings in operational costs, power, and footprints [18]. On
the other hand, erasure coding has a drawback of incurring
high repair penalty, as the repair of any lost erasure-coded
data will trigger a transfer of much more available data
than the actual amount of lost data. The amount of repair
traffic can reach hundreds of terabytes per day in production
data centers and overwhelm the bandwidth resources for
foreground applications [27].

Thus, extensive studies in the literature focus on minimiz-
ing the repair traffic in erasure-coded storage (e.g., [8], [18],
[21], [22], [28], [30], [35]). In particular, the repair problem in
erasure-coded data centers poses a unique research challenge
due to the hierarchical data center architecture, in which
multiple nodes (or servers) are grouped in racks, and the
cross-rack bandwidth is typically much more limited than
the inner-rack bandwidth [2], [5]. This leads to two possible
redundancy placement schemes. Most studies (e.g., [10],
[18], [23], [28]) adopt flat placement, in which erasure-coded
data is distributed across distinct nodes, each of which is
located in a distinct rack, to maximize the tolerance against

• A preliminary version of this paper appeared in [38]. In this extended
version, we extend SIMEDC with importance sampling to accelerate the
simulation analysis.

• M. Zhang, S. Han, and P. Lee are with the Department of Computer
Science and Engineering, The Chinese University of Hong Kong, Hong
Kong (E-mails: millyz0204@gmail.com, {sjhan,pclee}@cse.cuhk.edu.hk).

rack failures. However, the repair of any lost data in flat
placement inevitably triggers cross-rack transfer of available
data. On the other hand, recent studies [16], [17], [33] argue
that rack failures are much rarer than node failures [7], [10],
and hence advocate hierarchical placement, in which erasure-
coded data is distributed across fewer racks, or equivalently
multiple nodes per rack, to trade rack-level fault tolerance
for the reduction of cross-rack repair traffic. By enabling
partial repair operations within each rack, the cross-rack
repair traffic can be provably minimized [16], with over 40%
reduction of the minimum repair traffic achievable by the
classical minimum-storage regenerating codes [8].

From the perspectives of reliability analysis, the erasure
coding configuration and the redundancy placement in
erasure-coded data centers pose new reliability issues: (1)
How much can the reduction of cross-rack repair traffic
improve reliability? (2) What is the reliability trade-off of
sacrificing rack-level fault tolerance for reduced cross-rack
repair traffic? (3) How does the reliability of an erasure-coded
data center vary subject to more complicated failure patterns?
While the literature is rich of modeling- or simulation-based
reliability studies on storage systems, the reliability analysis
that specifically takes into account the hierarchical nature of
erasure-coded data centers remains largely unexplored.

In this paper, we present a comprehensive simulation
study on the reliability of an erasure-coded data center. Our
key contributions are two-fold:
• We build SIMEDC, a discrete-event simulator that charac-

terizes the reliability of an erasure-coded data center. It is
designed to be comprehensive by accounting for various
factors as inputs, including the data center topology,
erasure codes (e.g., the classical Reed-Solomon codes [29],
and the recently proposed Local Reconstruction Codes [18]
and Double Regenerating Codes [16], [17]), redundancy
placement (i.e., flat or hierarchical), as well as failure/repair
patterns of different subsystems derived from either sta-
tistical models or production traces. It reports different
reliability metrics that capture the durability and availabil-
ity of an erasure-coded data center. Furthermore, it can
adopt Importance Sampling [12], [20], [24] to accelerate the



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

ToR Switch 

… 

Rack 

ToR Switch 

… 

ToR Switch 

… 

Node 

… 

Network Core 

Fig. 1. Architecture of a hierarchical data center.

simulation process.
• We conduct extensive reliability analysis using SIMEDC.

We find that hierarchical placement generally achieves
higher reliability than flat placement due to the reduction
of cross-rack repair traffic, even though its reliability
degrades in the presence of correlated failures. We also
observe similar behaviors based on production traces
collected at Los Alamos National Laboratory [31].

The source code of our SIMEDC implementation is
available at http://adslab.cse.cuhk.edu.hk/software/simedc.

2 BACKGROUND AND PROBLEM

2.1 Data Center Architecture
We consider a hierarchical data center, as shown in Figure 1,
that comprises multiple racks, each of which holds a number
of commodity machines called nodes (or servers). Each
node is further attached with one or multiple disks that
provide storage space. Nodes within the same rack are
interconnected by a top-of-rack (ToR) switch, and the racks are
interconnected by a network core that is composed of layers
of aggregation and core switches [3]. Such a hierarchical data
center architecture is also considered in previous work [5],
[16], [33].

We assume that the data transfer performance of a
hierarchical data center is bottlenecked by the available cross-
rack bandwidth. In practice, the cross-rack bandwidth is
much more constrained than the inner-rack bandwidth due to
oversubscription in the network core [2], [5]. Although data
transfers can be slowed down by disk I/Os, in practical data
centers, each node can be attached with an array of multiple
commodity disks to achieve much higher sequential disk
I/O throughput than the network speed [5]. Furthermore,
in the context of storage reliability, the bandwidth allocated
for storage-repair tasks are often throttled [18], [35], which
further limits the reconstruction performance of failed data
and hence degrades the overall storage reliability. Thus, how
the cross-rack bandwidth affects storage reliability is one key
topic of our reliability analysis.

2.2 Failure Model
Practical data centers are susceptible to failures. In our
analysis, we focus on failures occurring at three levels of
subsystems: racks, nodes, and disks. Failures can be as either
transient, in which a subsystem is only temporarily unavail-
able without causing actual data loss (e.g., due to network
disconnection, reboots, or maintenance), or permanent, in
which a subsystem failure can lead to permanent data loss
(e.g., due to disk crashes).

Failures can be further classified as independent, in which
subsystems fail independently, or correlated, in which a
number of subsystems fail simultaneously due to a common

failure event. Correlated failures are more severe than
independent failures. For example, when a ToR switch of
a rack is broken, all nodes within the rack will become
temporarily unavailable. One common type of failures is
power outages, in which a significant fraction of nodes (up to
1%) will crash after a power-on restart and cause permanent
data loss [4], [34].

Our work considers the following failure events:
• Disk failures: We focus on permanent disk failures, in which

all data on a failed disk is lost. For simplicity, we currently
do not consider latent sector errors that damage only
partial data of a disk, as their severity heavily depends on
the complicated data layout on the whole disk.

• Node failures: We consider both transient and permanent
node failures. In the former, all disks attached to a failed
node are only temporarily unavailable without data loss,
while in the latter, we assume that the data stored on all
disks is permanently lost.

• Rack failures: We only consider transient rack failures, in
which the data of all nodes within a failed rack becomes
unavailable, yet there is no data loss.

• Correlated failures: We treat a rack as the largest failure
domain, such that a correlated failure brings down a
fraction of nodes within a rack. We focus on permanent
correlated failures, such that the failed nodes incur data
loss (e.g., due to power outages [4], [34]).

2.3 Erasure Coding

An erasure code is often constructed by two parameters n
and k, where k < n. Suppose that a data center organizes
data as fixed-size units called chunks. Then for every k
original uncoded chunks, an erasure code encodes them into
n coded chunks of the same size, such that the collection of
the n coded chunks is called a stripe. A data center typically
contains multiple stripes that are independently encoded.
An erasure code is said to be Maximum Distance Separable
(MDS) if any k out of the n coded chunks of a stripe can
reconstruct the original k uncoded chunks (i.e., an MDS code
can tolerate the failures of up to n − k chunks), while the
amount of storage redundancy is minimum (i.e., storage-
optimal).

Most erasure codes deployed in practice are systematic
codes, meaning that the original data is kept in storage
after encoding. That is, for (n, k) codes, k of the n chunks
of each stripe are exactly the original k uncoded chunks
that can be directly accessed. In our analysis, we do not
differentiate between uncoded and coded chunks, and we
focus on measuring the durability and availability of all
chunks stored in a data center (see Section 3). We use “chunks”
to collectively refer to both uncoded and coded chunks if the
context is clear.

Erasure coding incurs high repair penalty as it needs to
retrieve multiple chunks in order to repair a failed chunk
that is unavailable or lost. We define the repair traffic as
the amount of information retrieved for a repair operation.
For example, for (n, k) MDS codes, a standard approach of
repairing a failed chunk is to retrieve k available chunks of
the same stripe (i.e., the repair traffic is k chunks). Since the
most common failure scenario in practice [18], [27] is a single
failure (i.e., each stripe has only one single failed chunk),



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

many erasure codes have been proposed to improve the
repair performance by reducing the repair traffic for a single-
chunk repair. In this paper, we focus on three representative
erasure codes that incur different amounts of repair traffic
for a single-chunk repair:

• Reed-Solomon (RS) codes: RS codes [29] are the classical
MDS codes that have been widely deployed in modern
data centers [10], [35]. RS codes follow the standard repair
approach of MDS codes. That is, given (n, k), the repair
traffic of a single-chunk repair in RS codes is k chunks.

• Local Reconstruction Codes (LRC): Some erasure codes (e.g.,
[18], [30]) exploit locality to reduce repair traffic. In this
paper, we focus on Azure’s LRC [18]. It divides k uncoded
chunks of a stripe into l local groups (assuming that k is
divisible by l) and creates one local coded chunk for each
local group, and additionally creates n−k− l global coded
chunks by encoding all k uncoded chunks. Given (n, k, l),
the repair traffic of repairing an uncoded chunk or a local
coded chunk is k

l chunks (retrieved from the same local
group), while that of repairing a global coded chunk is k
chunks (retrieved from the same stripe). Note that LRC is
non-MDS: even though each stripe has n − k additional
coded chunks, LRC cannot tolerate all possible failures of
n− k chunks. For example, LRC(16,12,2) cannot tolerate
the failures of four chunks in the same local group, even
though it has four parity chunks in total in each stripe.

• Double Regenerating Codes (DRC): Some studies (e.g., [16],
[33]) focus on reducing the cross-rack repair traffic in an
erasure-coded data center by storing multiple chunks in
one rack (Section 2.4 explains the details of chunk place-
ment). In this paper, we focus on DRC [16], which provably
minimizes the cross-rack repair traffic. It distributes n
chunks of a stripe across r distinct racks, where n is
divisible by r, and each rack holds n

r chunks in different
nodes within the rack. In a single-chunk repair, DRC
exploits a two-phase approach: it first performs partial
repairs by selecting a node (called relayer) to encode the
available chunks of the same stripe within each rack, and
then re-encodes the encoded chunks from multiple relayer
nodes across different racks to reconstruct the failed chunk.
Like RS codes, DRC is also MDS with optimal storage
redundancy. Note that DRC can be viewed as an extension
to the classical minimum-storage regenerating (MSR) codes
[8], which minimize the repair traffic for a single-chunk
repair under the minimum storage redundancy. If we set
r = n (i.e., one chunk per rack), DRC achieves the same
minimum repair traffic, given by n−1

n−k chunks, as MSR
codes. In general, given (n, k, r), the minimum cross-rack
repair traffic of DRC is r−1

r−bkr/nc chunks [16].

If a stripe contains more than one failed chunk but no
more than n − k failed chunks, we resort to the standard
repair approach by retrieving k available chunks of the same
stripe (note that the repair of LRC may fail as it is non-MDS).
Specifically, for a failed chunk, if it is the only failed chunk in
a stripe, the repair traffic follows the improved single-chunk
repair approach of the given erasure code; otherwise, the
repair traffic is k chunks. We assume that we repair one failed
chunk of a stripe at a time, and we do not consider repairing
multiple failed chunks simultaneously in one stripe.

ToR Switch

…

Rack 1

Network Core

ToR Switch

…

Rack 2

ToR Switch

…

Rack 4

ToR Switch

…

Rack 5

ToR Switch

…

Rack 6

ToR Switch

…

Rack 3

(a) Flat placement

ToR Switch

…

Rack 1

Network Core

ToR Switch

…

Rack 2

ToR Switch

…

Rack 4

ToR Switch

…

Rack 5

ToR Switch

…

Rack 6

ToR Switch

…

Rack 3

(b) Hierarchical placement

Fig. 2. Example of repairing a failed chunk under flat placement and
hierarchical placement, using RS codes with n = 6 and k = 3. The
nodes that hold the chunks of the same stripe are represented in dark
color. In flat placement, the six chunks of a stripe reside in six racks,
while in hierarchical placement, the six chunks of a stripe reside in three
racks.

2.4 Chunk Placement

To tolerate node or rack failures, erasure coding places the
chunks of each stripe in different nodes and racks. We
consider two chunk placement schemes for each stripe of n
chunks:
• Flat placement: The n chunks of a stripe are stored in
n different nodes that reside in n distinct racks (i.e.,
one chunk per rack). This provides the maximum fault
tolerance against both node and rack failures. The trade-off
is that repairing a failed chunk must retrieve available
chunks from other racks, thereby incurring a significant
amount of cross-rack repair traffic. Flat placement is
commonly used in production data centers [10], [18], [23],
[28].

• Hierarchical placement: The n chunks of a stripe are stored
in n different nodes that reside in r < n distinct racks,
each of which has n/r chunks, assuming that n is divisible
by r. This reduces the cross-rack repair traffic, as repairing
any failed chunk can leverage the available chunks within
the same rack. The trade-off is that fewer rack failures can
be tolerated than flat placement.

Note that RS codes and LRC can adopt both flat and
hierarchical placements. Figure 2 shows an example of how
hierarchical placement incurs less cross-rack repair traffic
than flat placement, using RS codes with n = 6 and k = 3.
Suppose that a node wants to reconstruct a failed chunk in its
local storage. In flat placement (see Figure 2(a)), each of the
six chunks of a stripe is placed in a distinct rack. Repairing
the failed chunk will retrieve three chunks across racks. On
the other hand, in hierarchical placement (see Figure 2(b)),
we can place two chunks in a rack. Repairing the failed chunk
can retrieve one chunk from the same rack and two more
chunks from other racks, so the cross-rack repair traffic is
reduced to two chunks. DRC specifically exploits hierarchical
placement to minimize the cross-rack repair traffic.

In practice, the numbers of nodes and racks are much
larger than the stripe size n. Thus, we adopt the notion of
declustered placement [36] to place n chunks: for flat place-
ment, we randomly select n racks from all available racks,
followed by randomly selecting one node from all available



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

Event Queue

Failure Event Repair Event

Mission timeTime 0

…

Event Handler

Event

Generator

Reliability

Metrics

Models

/ Traces

Data Center 

Topology

Erasure 

Code

Chunk 

Placement

Fig. 3. SIMEDC architecture.

nodes within the same rack; for hierarchical placement, we
again randomly select r racks and n/r nodes per rack. Thus,
when we repair a failed node that stores the failed chunks of
multiple stripes, we can retrieve available chunks from all
available nodes and racks in the whole data center, thereby
better harnessing parallelism to improve repair performance
and hence storage reliability [36]. Based on declustered
placement, our goal is to study the reliability trade-off
between flat and hierarchical placements for different erasure
codes.

3 SIMEDC DESIGN

We present SIMEDC, a discrete-event simulator that char-
acterizes the reliability of an erasure-coded data center via
simulation. SIMEDC builds on the High-Fidelity Reliability
Simulator (HFRS) [12], which is written in Python and origi-
nally designed for the reliability simulation of a monolithic
disk array. SIMEDC extends HFRS to support various erasure
codes and chunk placement schemes in a hierarchical data
center with the cross-rack network bandwidth constraint.

3.1 Architectural Overview
Figure 3 shows the SIMEDC architecture. At a high level,
SIMEDC performs the reliability simulation over a suffi-
ciently large number of iterations. In each iteration, it takes
the data center topology, erasure code construction, and
chunk placement as inputs for initialization. It records the
chunk positions for a number of stripes, specified by the
storage capacity that is simulated, across different nodes and
racks; note that the chunk positions vary across iterations.
It generates a sequence of failure and repair events, and
processes them in chronological order until a failure event
triggers data loss or a pre-specified system mission time (e.g.,
10 years) is reached. It then outputs a set of reliability metrics
for the iteration. Finally, it reports the reliability metrics
averaged over all iterations.

SIMEDC allows to generate events from two sources,
either statistical models for the failure and repair behaviors,
or event traces that record the failure and repair events
in a production data center. Both sources of events can be
specified as inputs to SIMEDC before the simulation starts.

3.2 Reliability Metrics
SIMEDC measures three reliability metrics:
• Probability of data loss (PDL): It measures the likelihood

that a data center experiences the unrecoverable loss of

any chunk (i.e., the number of permanently failed chunks
in an erasure-coded stripe exceeds the tolerable limit) over
a mission time.

• Normalized magnitude of data loss (NOMDL): It is
proposed by Greenan et al. [14] to measure the expected
amount of data loss (in bytes) normalized to the storage ca-
pacity. It has several key properties that arguably improve
existing reliability metrics [14].

• Blocked ratio (BR): It measures the fraction of time that
a chunk cannot be directly accessed due to the transient
or permanent failures of the subsystem that holds the
chunk. Note that such an inaccessible chunk may still
be recoverable from other available chunks of the same
stripe in other subsystems, but it incurs extra overhead of
reconstructing the chunk. Thus, the BR models the duration
when a chunk cannot be directly accessed in normal mode
(i.e., without failures).

In Section 3.4, we elaborate how these metrics are
computed in our implementation. Note that both PDL and
NOMDL are used to measure durability, while the BR is used
to measure availability. A data center achieves good reliability
if the values of the metrics are small.

3.3 Event Handling

Each failure or repair event in SIMEDC is represented in
a tuple of three fields: (1) the timestamp when the event
occurs, (2) the event type, and (3) the subsystem associated
with the event. SIMEDC stores all events in an event queue,
which is implemented as a priority queue that returns the
event with the smallest timestamp for the event handler to
process accordingly (see Figure 3). We handle permanent
and transient failures separately, and consider four event
types: (1) a permanent failure, (2) a transient failure, (3) a
permanent failure repair, and (4) a transient failure repair.

Failure handling: Each subsystem (i.e., rack, node, or disk) is
associated with one of the three states during the simulation:
(1) normal (i.e., no failure occurs), (2) unavailable (i.e., a
transient failure occurs), and (3) crashed (i.e., a permanent
failure occurs). In terms of severity, normal is the least severe,
unavailable is the middle, and crashed is the most severe.
We assume that if a subsystem fails, its state will be updated
only if the state becomes more severe. That is, a normal or
unavailable state becomes crashed for a permanent fail-
ure, or a normal state becomes unavailable for a transient
failure; however, a crashed state remains unchanged. Also,
all its descendant subsystems in a hierarchical data center
will inherit the same state that is more severe. That is, if a
node is crashed, then all the disks attached to the node are
also crashed; if a rack (resp. node) is unavailable, then all
the nodes and disks within the rack (resp. all attached disks)
are also unavailable if they are originally normal.

SIMEDC processes failure events (see Section 2.2) from
the event queue. Upon receiving a permanent failure event,
it checks if every chunk stored in the crashed subsystem can
be repaired by a sufficient number of available chunks of
the same stripe. If not, it concludes that there is data loss
and returns the reliability metrics for the current iteration. If
there is no data loss or a transient failure event is received,
SIMEDC triggers a repair event of the same type (i.e.,



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

permanent or transient) for the failed subsystem and inserts
the event into the event queue for later repair handling.

Repair handling: Before inserting a repair event into the
event queue, SIMEDC computes the repair time needed to
repair a permanent or transient failure. For a permanent
failure, the repair time is calculated by dividing the total
amount of cross-rack repair traffic for all failed chunks by
the available cross-rack bandwidth. For a transient failure,
the repair time is determined by either the statistical models
or the event traces for the corresponding subsystem (see
Section 3.1).

One subtlety is that when a permanent failure occurs, a
failed chunk may not be able to be repaired immediately,
since other subsystems associated with the same stripe are
currently under transient failures and there are insufficient
available chunks for repairing the failed chunk (although
there is no data loss). Thus, if we find that the failed chunk
cannot be repaired immediately due to too many transient
failures in the same stripe, we add the repair time for the
failed chunk by the amount of time until there are sufficient
available chunks for the repair, by checking the repair times
of the repair events of the related transient failures in the
event queue.

To simplify repair handling, we do not consider how to
optimally schedule the repairs of multiple failed chunks of a
permanently failed subsystem to minimize the total repair
time. In addition, if a stripe that is currently under repair
has an additional failed chunk, we do not modify the repair
time of any already triggered repair event. Our observation
is that each stripe has at most one failed chunk in most
cases throughout the mission time in our evaluation (see
Section 5); in fact, field studies also confirm that single-chunk
repairs dominate in practice [18], [27]. Thus, the repair time
of a permanently failed chunk is mostly determined by the
cross-rack repair traffic incurred for a single-chunk repair.

When a repair event is received from the event queue,
SIMEDC updates the state of the associated subsystem to the
normal state. In addition, if any descendant subsystem has
the same failure type, we also update its state to normal (al-
though they may fail due to different reasons). For example,
if a crashed (resp. unavailable) node is repaired, any of
its associated disks that is crashed (resp. unavailable) is
also repaired and its state becomes normal. Finally, SIMEDC
creates the next failure event of the same type (i.e., permanent
or transient) for the subsystem and inserts the event into the
event queue for later failure handling.

3.4 Putting It All Together
Algorithm details: Algorithm 1 shows the pseudo-code of
the workflow of SIMEDC. The MAIN procedure (Lines 1-6)
executes the reliability simulation function SIMULATE over a
number of iterations X , where X is tunable (see below).

In each iteration, SIMULATE first performs initialization
(Line 8), in which it initializes the data center topology,
erasure coding scheme, and chunk placement. Also, it defines
the likelihood ratio L, which is used in importance sampling
(see Section 4). We now set L = 1 throughout the algorithm.

SIMULATE creates two queues Qf and Qr (Line 9), which
store the failure events and repair events, respectively. It
also generates the first failure event for each subsystem

Algorithm 1 SIMEDC
1: procedure MAIN
2: for i = 1 to X do
3: (PDLi, NOMDLi, BRi)← SIMULATE
4: end for
5: return 1

X

∑X
i=1(PDLi, NOMDLi, BRi)

6: end procedure

7: function SIMULATE
8: Initialize the erasure-coded data center and set L = 1
9: Create Qf and Qr

10: Generate the first failure event for each subsystem
11: Push all failure events to Qf
12: while true do
13: (time t, type y, subsystem s)← GET NEXT EVENT
14: if t > T then
15: return (0, 0, BR)
16: end if
17: if y is a permanent failure then
18: if data loss occurs then
19: return (L, NOMDL, BR)
20: else
21: s.state← crashed
22: for each s’s descendant sd do
23: sd.state← crashed
24: end for
25: tR ← Cross-rack repair traffic

Cross-rack bandwidth
26: Qr .Push(t+ tR, permanent failure repair, s)
27: end if
28: else if y is a transient failure then
29: if s.state == normal then
30: s.state← unavailable
31: for each s’s normal descendant sd do
32: sd.state← unavailable
33: end for
34: end if
35: tR ← Repair time of s from models or traces
36: Qr .Push(t+ tR, transient failure repair, s)
37: else if y is a permanent failure repair then
38: if s.state == crashed then
39: s.state← normal
40: for each s’s crashed descendant sd do
41: sd.state← normal
42: end for
43: end if
44: tF ← time to next permanent failure
45: Qf .Push(t+ tF , permanent failure, s)
46: else if y is a transient failure repair then
47: if s.state == unavailable then
48: s.state← normal
49: for each s’s unavailable descendant sd do
50: sd.state← normal
51: end for
52: end if
53: tF ← time to next transient failure
54: Qf .Push(t+ tF , transient failure, s)
55: end if
56: end while
57: end function

based on the specified failure distributions and adds them
to Qf (Line 11). It then extracts one event from either
Qf or Qr through the GET NEXT EVENT function (see
Algorithm 2). If the system is normal (i.e., no failure exists),
GET NEXT EVENT returns the first failure event to process;
otherwise, it returns either the next failure event or the
next repair event, depending on which one has a smaller



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

Algorithm 2 Get next event
1: function GET NEXT EVENT
2: if the whole system is normal then
3: (time t, type y, subsystem s)← Qf .Pop
4: else
5: if timestamp of next failure event < timestamp of

next repair event then
6: (time t, type y, subsystem s)← Qf .Pop
7: else
8: (time t, type y, subsystem s)← Qr .Pop
9: end if

10: end if
11: return (time t, type y, subsystem s)
12: end function

timestamp. While we can maintain a single event queue as in
Figure 3 to arrange all failure and repair events in the order
of their timestamps, separating the failure and repair events
into two queues simplifies our later extension for importance
sampling (see Section 4).

SIMULATE terminates if the event time exceeds the
mission time T (Line 15); otherwise, it processes the event
according to one of the four event types: permanent failure
(Lines 18-27), transient failure (Lines 29-36), permanent
failure repair (Lines 38-45), and transient failure repair
(Lines 47-54). Each failure (resp. repair) event will trigger
the next repair (resp. failure) event of the same type (i.e.,
permanent or transient). This ensures that each subsystem
must have exactly one pending failure or repair event for
both permanent and transient types.

SIMULATE returns a tuple of PDL, NOMDL, and BR in
each iteration. For the PDL, it is 0 if there is no data loss
(Line 15), or L = 1 otherwise (Line 19). For the NOMDL, it
is 0 if there is no data loss (Line 15); otherwise, it is given by
the total number of chunks that are unrecoverable divided by
the total number of chunks stored in the data center (Line 19).
For the BR, it is computed as the fraction of time that a chunk
is in the normal state over the mission time, averaged over
all chunks stored in the data center.

Note that SIMULATE introduces random factors in differ-
ent places in each iteration, including: the chunk placement
in a data center (Line 8) and the generation of failure and
repair events according to the statistical models (Lines 10,
35, 45, and 54). Thus, the returned results of SIMULATE are
different across iterations.

Configuring the number of iterations: One key question is
how to configure the “right” number of iterations X in our
simulation. A large X improves simulation accuracy, but
incurs a significantly long simulation time. In SIMEDC, we
use the relative error (RE) of the measured PDL to configure
the number of iterations. Suppose that we choose the 95%
confidence interval. Then the RE of the currently measured
PDL (denoted by p) is given by:

RE =
1.96

p

√
p(1− p)

X − 1
. (1)

Our goal is to run a sufficient number of iterations such
that RE is less than 20% [12]. Initially, we set X = 1,000 and
obtain p. If the RE is less than 20%, we stop the simulation,
and return p as the PDL as well as both measured NOMDL
and BR. Otherwise, we compute a new X from Equation (1)

with RE = 20% and the current value of p. We then run
more iterations until the total number of executed iterations
is equal to the new X . We check the RE again and add more
iterations if needed.

To control the simulation time, we set the maximum total
number of iterations to be executed as 20,000, and stop the
simulation anyway if the maximum number of iterations is
reached. The main limitation is that for the erasure codes that
are highly reliable (e.g., the codes with high redundancy or
small repair traffic), the measured PDL may be too small such
that the RE remains high, or we may not even observe a data
loss event when the maximum total number of iterations is
reached [12]. In such cases, the reliability results should not
be fully trusted, although they can provide indicators that
the storage system is already very reliable.

Parallelizing simulation: Our simulation is embarrassingly
parallel as the iterations are independent. Thus, we fur-
ther accelerate the whole simulation through paralleliza-
tion. Specifically, we split the X iterations of SIMULATE
in Algorithm 1 into multiple subsets, each of which is
executed by a standalone process. We distribute the processes
across multiple CPU cores in multiple machines. Finally, we
compute the average results from all processes.

4 IMPORTANCE SAMPLING

SIMEDC thus far realizes discrete-event simulation by
simulating the occurrence of each event one by one. In
this section, we show how SIMEDC speeds up the simu-
lation workflow through importance sampling. Note that
importance sampling is a well-known technique for realizing
accelerated simulation analysis for rare events (e.g., failures
in highly reliable systems). We refer readers to [12], [24] for
the detailed explanation on importance sampling. We do not
claim the novelty of the technique itself, but instead our goal
is to demonstrate how SIMEDC can build on importance
sampling to speed up the simulation analysis specifically for
an erasure-coded data center with a hierarchical topology.

Background: The idea of importance sampling is to estimate
some rarely occurred properties of a probability distribution
by sampling from another probability distribution that
increases the occurrences of the properties. In the case of
SIMEDC, the property of interest refers to the permanent
failures. By increasing the occurrences of permanent failure
events, we can measure the reliability of a data center in
accelerated mode.

As a case study, we implement importance sampling
based on uniformization-based balanced failure biasing [12],
[20], [24]. Specifically, through uniformization, we sample
permanent failure events from a homogeneous Poisson
process with arrival rate β to match a non-homogeneous
Poisson process with arrival rate λ(t), such that we set
β ≥ λ(t) for all t to “thin” the homogeneous process to
provide points for the non-homogeneous process [20]. Thus,
we draw a permanent failure event from the homogeneous
Poisson process at time t with probability λ(t)

β . To increase
the occurrences of failures via importance sampling, the
simulation workflow now accepts a point as a permanent
failure event with the failure biasing probability Pfb instead of
λ(t)
β . It also returns a likelihood ratio L for each event (instead



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

of one in the original simulation as shown in Algorithm 1) to
unbiase the estimate at the end of the simulation.

Both β and Pfb need to be properly configured. For β, it
should be close to the average repair rate, while for Pfb, it is
typically set as an intermediate value between 0 and 1 (e.g.,
0.5) [12]. We evaluate the impact of β and Pfb in Section 5.4.

Integrating importance sampling into SIMEDC: We
show how we leverage importance sampling (based on
uniformization-based balanced failure biasing) to estimate
the PDL in accelerated mode. A challenge here is that we
need to address both permanent disk failures and permanent
node failures in the estimation of the PDL. Thus, we address
the following issues: (1) determination of the failure type
(i.e., disk or node failures); (2) unbiasing the estimated PDL
with the likelihood ratio; and (3) scheduling repair and
failure events for different crashed disks or nodes. Currently,
SIMEDC does not consider transient failures in importance
sampling; how to apply importance sampling to transient
failures is posed as future work.

Suppose that we have generated a failure event at time
t. To determine whether the failure event is associated with
a disk or a node, we define a disk failure probability Pdf ,
which is calculated as the ratio of the sum of the failure
rates of all available disks to the sum of the failure rates
of all available disks and nodes. For example, if we choose
the failure distributions shown in Table 1 (which we further
elaborate in Section 5.1), the disk failure rate at time t is

1.12t0.12

(10years)1.12 , while the node failure rate remains at 1
125months .

With probability Pdf , SIMEDC randomly chooses a disk from
all available disks to fail; otherwise, it randomly chooses a
node to fail. Thus, under importance sampling, a disk fails
with probability PfbPdf

Ad
, where Ad is the number of available

disks, while a node fails with probability Pfb(1−Pdf )
An

, where
An is the number of all available nodes.

Recall that without importance sampling, the actual
failure probability of a subsystem s (a disk or a node) is
λs(t)
β under uniformization. Thus, we unbiase the likelihood

ratio L by multiplying it with λs(t)/β
PfbPdf/Ad

for a disk failure, or

with λs(t)/β
Pfb(1−Pdf )/An

for a node failure.
To repair a failed subsystem, SIMEDC generates a repair

event as in Algorithm 1, where the repair time is determined
by the ratio of the amount of cross-rack bandwidth traffic to
the available cross-rack bandwidth. SIMEDC runs a number
of iterations until the RE is less than 20% (see Section 3.4).

Algorithm details: To incorporate importance sampling
into SIMEDC, we mainly modify the GET NEXT EVENT
function to determine how a failure event is generated.
Algorithm 3 shows the details. If the system is normal,
GET NEXT EVENT returns the first failure event to process;
otherwise, if some subsystems fail, it activates importance
sampling to accelerate the simulation. First, it draws a time t
from an exponential distribution with the scale parameter β
(Line 5). If t is larger than the earliest repair event time, the
earliest repair event is returned to be the next event (Lines 6-
7); otherwise, GET NEXT EVENT determines if the next event
is a failure event based on the failure biasing probability
Pfb (Line 8). If a failure event occurs, GET NEXT EVENT
further checks if it belongs to a disk failure or a node failure,
and accordingly updates L (which is defined as a global

Algorithm 3 Get next event under importance sampling
1: function GET NEXT EVENT
2: if the whole system is normal then
3: (time t, type y, subsystem s)← Qf .Pop
4: else
5: t← exp(β) + t
6: if t > time of next repair event then
7: (time t, type y, subsystem s)← Qr .Pop
8: else if U(0, 1) ≤ Pfb then
9: if U(0, 1) ≤ Pdf then

10: y ← permanent disk failure
11: s← a randomly chosen disk
12: L← L× λs(t)/β

PfbPdf/Ad

13: else
14: y ← permanent node failure
15: s← a randomly chosen node
16: L← L× λs(t)/β

Pfb(1−Pdf )/An

17: end if
18: else
19: y ← null
20: s← null
21: L← L× 1−λ(t)/β

1−Pfb

22: end if
23: end if
24: return (time t, type y, subsystem s)
25: end function

variable in SIMEDC) (Lines 8-22). Finally, it returns event
time t, failure type y, and the subsystem s associated with
the failure type if a failure event occurs.

5 SIMULATION RESULTS

In this section, we present the results of our reliability
analysis based on SIMEDC.

5.1 Simulation Setup
Our simulation uses the following default settings unless
otherwise specified.
Topology: We consider a data center with a total of 1,024
nodes that are evenly located in 32 racks (i.e., 32 nodes per
rack). Each node is attached with one disk1 of size 1 TiB, so
the total storage capacity of the simulated data center is 1 PiB.
We set the cross-rack bandwidth as 1 Gb/s, as obtained from
Facebook’s cluster measurements [30], and also set the chunk
size as 256 MiB, as the default chunk size in Facebook’s
warehouses. We set the system mission time of the data
center as 10 years [35]. While different erasure codes have
different amounts of redundancy, we store the same number
of data chunks, of a total size 0.5 PiB, for each erasure code
setting.
Failure and repair models: Prior studies provide various
statistical models for failure and repair patterns. Table 1
summarizes the default failure and repair models used in
our simulation, and we justify our choices based on prior
findings as follows.
• Permanent disk failures: The mean time of a permanent disk

failure often ranges from few years (e.g., 4 years [30]) to

1. If a node is attached with multiple disks, we expect that the
reliability of the data center will degrade as any permanent node failure
is assumed to cause the data in all underlying disks to be permanently
lost (see Section 2.1).



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

TABLE 1
Default failure and repair models.

Failure type Time-to-failure Repair time

Permanent disk failures W(1.12, 10 years, 0) cross-rack repair traffic
cross-rack bandwidthPermanent node failures Exp( 1

125 months )

Transient node failures Exp( 1
4 months ) Exp( 1

0.25 hours )

Transient rack failures Exp( 1
10 years ) W(1, 24 hours, 10)

Permanent correlated failures Exp( 1
1 year ) Exp( 1

15 hours )

W(β, η, γ) denotes a Weibull distribution with the shape parameter β,
the characteristic life η, and the location parameter γ; Exp(λ) denotes
an exponential distribution with the rate parameter λ.

tens of years [6], [10], [35]. We model the time-to-failure
as Weibull distributed with a characteristic life of 10 years.
The repair time depends on the amount of cross-rack repair
traffic and the cross-rack bandwidth (see Section 3.3).

• Permanent node failures: According to the statistics of Yahoo!
cluster [34], about 0.8% of nodes permanently fail each
month. Thus, we set the time-to-failure as exponentially
distributed with mean 125 months. Like permanent disk
failures, the repair time of a permanent node failure
depends on the amount of cross-rack repair traffic and
the cross-rack bandwidth.

• Transient node failures: A node temporarily fails once every
4 months, and the failure duration lasts no more than
15 minutes [10]. We set the time-to-failure and the repair
time of a transient node failure as exponentially distributed
with means 4 months and 15 minutes, respectively.

• Transient rack failures: We follow the same model in [35],
in which the time-to-failure is exponentially distributed
with mean 10 years [10], while the repair time is Weibull
distributed with a characteristic life of 24 hours [7].

• Permanent correlated failures: The above failure types all
belong to independent failures. We also consider a per-
manent correlated failure due to a power outage, which
occurs once a year in production environments [34]. We set
the time-to-failure as exponentially distributed with mean
one year. We assume that a power outage affects a single
rack and makes the rack temporarily unavailable until
a power-on restart. We set the repair time of the power
outage as exponentially distributed with mean 15 hours2.
Furthermore, after the power-on restart, we permanently
fail 1% of nodes in the rack, as in production environments
[34]. We repair the permanent node failures as above.

Erasure codes: We compare RS codes, LRC, and DRC under
flat and hierarchical chunk placements. We set the parameters
n, k, l (for LRC only), and r (where r = n and r < n
correspond to flat and hierarchical placements, respectively)
based on production settings as follows.

• RS(n, k): We choose three settings of (n, k): RS(9,6) with r=
9 and r=3, RS(14,10) with r=14 and r=7, and RS(16,12)
with r=16 and r=4. Note that RS(9,6) is reportedly used
by QFS [25], RS(14,10) is reportedly used by Facebook [23],

2. We analyze failure records (see Section 5.5 for details) on node
failures due to power outage or power spike, and find that the repair
times range from 9 hours to 24 hours. Thus, we choose 15 hours as the
average time for restoring a power outage.

6

4

10
9

12

9

6.75

4.125

2

 0

 2

 4

 6

 8

10

12

R
S(9

,6
),r

=9

R
S(9

,6
),r

=3

R
S(1

4,
10

),r
=1

4

R
S(1

4,
10

),r
=7

R
S(1

6,
12

),r
=1

6

R
S(1

6,
12

),r
=4

LR
C
(1

6,
12

),r
=1

6

LR
C
(1

6,
12

),r
=4

D
R
C
(9

,6
,3

)

C
ro

s
s
−

ra
c
k
 r

e
p
a
ir
 t
ra

ff
ic

 (
c
h
u
n
k
s
)

Fig. 4. Cross-rack repair traffic (in chunks) for different erasure code
settings.

and RS(16,12) correspond to the parameters of Windows
Azure [18] (see below).

• LRC(n, k, l): We choose LRC(16,12,2), reportedly used by
Windows Azure [18], with r = 16 and r = 4. In hierarchical
placement, we place each local group of chunks in the
fewest possible racks to minimize the cross-rack repair
traffic in a single-chunk repair. In our case, we divide the
r = 4 racks into two rack groups with two racks each,
such that each of the l = 2 local groups of chunks (with six
uncoded chunks and one local coded chunk) and a global
coded chunk are placed in eight nodes of one rack group.

• DRC(n, k, r): We choose DRC(9,6,3), whose systematic code
construction has been proposed [17].

Note that all the above erasure code settings have similar
amounts of storage redundancy (i.e., n/k) between 1.33×
and 1.5×. Figure 4 illustrates the cross-rack repair traffic (in
unit of chunks) for a single-chunk repair of different erasure
code settings; for LRC codes, we average the cross-rack repair
traffic for each type of chunks (see Section 2.3).

We present the results of PDL, NOMDL, and BR. For
the PDL, we also show the relative error; for both PDL and
NOMDL, we use the log scale for the y-axis. By default, we
disable importance sampling unless specified otherwise.

5.2 Independent Failures
We first study the reliability of various erasure code settings
under independent failures (i.e., the first four failures in
Table 1), by disabling the permanent correlated failures.
Frequency of single-chunk repairs: We examine the repair
events in our simulation, and find that over 99.5% of repairs
are single-chunk repairs for all erasure code settings. Thus,
the repair time mostly depends on the amount of cross-rack
repair traffic of a single-chunk repair (as shown in Figure 4)
of each erasure code setting.
Erasure codes in flat placement: Figure 5 shows the relia-
bility results under independent failures only based on the
default settings; in particular, the cross-rack bandwidth is
1 Gb/s. We first consider RS codes and LRC in flat placement
(i.e., r = n). RS(14,10) has the lowest PDL and NOMDL
among all RS codes, as it tolerates more failed chunks than
RS(9,6) and has less repair traffic than RS(16,12). Note that
LRC(16,12,2) has almost the same PDL as RS(16,12) even
though it incurs less repair traffic, mainly because it is non-
MDS and cannot tolerate all combinations of four failed
chunks as RS(16,12). However, LRC(16,12,2) has less NOMDL



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

1e−04

1e−03

1e−02

1e−01

R
S(9

,6
),r

=9

R
S(9

,6
),r

=3

R
S(1

4,
10

),r
=1

4

R
S(1

4,
10

),r
=7

R
S(1

6,
12

),r
=1

6

R
S(1

6,
12

),r
=4

LR
C
(1

6,
12

),r
=1

6

LR
C
(1

6,
12

),r
=4

D
R
C
(9

,6
,3

)

P
D

L

1e−10

1e−09

1e−08

1e−07

R
S(9

,6
),r

=9

R
S(9

,6
),r

=3

R
S(1

4,
10

),r
=1

4

R
S(1

4,
10

),r
=7

R
S(1

6,
12

),r
=1

6

R
S(1

6,
12

),r
=4

LR
C
(1

6,
12

),r
=1

6

LR
C
(1

6,
12

),r
=4

D
R
C
(9

,6
,3

)

N
O

M
D

L

0.0e+00

5.0e−04

1.0e−03

1.5e−03

R
S(9

,6
),r

=9

R
S(9

,6
),r

=3

R
S(1

4,
10

),r
=1

4

R
S(1

4,
10

),r
=7

R
S(1

6,
12

),r
=1

6

R
S(1

6,
12

),r
=4

LR
C
(1

6,
12

),r
=1

6

LR
C
(1

6,
12

),r
=4

D
R
C
(9

,6
,3

)

B
R

(a) PDL (b) NOMDL (c) BR

Fig. 5. Reliability under independent failures only, with the cross-rack bandwidth 1 Gb/s.

(by 26.5%) as it may have fewer failed chunks when data
loss occurs.
Comparison of flat placement and hierarchical placement:
We again use Figure 5 to compare flat placement (i.e., r = n)
and hierarchical placement (i.e., r < n). Hierarchical place-
ment generally achieves better reliability than flat placement
for the same erasure code, mainly because of the reduction
of cross-rack repair traffic. For example, compared to flat
placement, hierarchical placement decreases the PDL of
RS(9,6) by 80% and that of LRC(16,12,2) by 89%. In particular,
DRC achieves the best reliability among all erasure code
settings we consider; the relative error of PDL is high due
to the small value of PDL (see Equation 1). We also observe
that the BR closely matches the cross-rack repair traffic of
each erasure code setting as shown in Figure 4; that is, the
BR increases with the amount of cross-rack repair traffic.
Impact of cross-rack bandwidth: We also vary the cross-
rack bandwidth (including 400 Mb/s, 2 Gb/s, 5 Gb/s, and
10 Gb/s) in our reliability evaluation; in the interest of
space, we refer readers to our digital supplementary file
for the results. To summarize, if the cross-rack bandwidth
is 400 Mb/s, the erasure code settings under flat placement
have PDL equal to (or nearly equal to) one (i.e., data loss
always occurs), while DRC(9,6,3) has PDL equal to 1.26e-
2. This shows the significance of minimizing the cross-rack
repair traffic under limited cross-rack bandwidth. If the cross-
rack bandwidth is 2 Gb/s or higher, the repair performance
improves and hence the PDL significantly decreases, in
which some erasure code settings do not observe any data
loss. In our digital supplementary file, we also report the
evaluation results for the cross-rack bandwidth of 5 Gb/s
and 10 Gb/s for the cases of correlated failures (Section 5.3)
and importance sampling (Section 5.4).

5.3 Correlated Failures
We now add permanent correlated failures to our simulation
in addition to independent failures. Our investigation finds
that over 99.3% of repairs are single-chunk repairs, so the
repair time is still mainly determined by the amount of cross-
rack repair traffic of a single-chunk repair. Figure 6 shows
the results. For RS(14,10) and RS(16,12), they both incur
high cross-rack repair traffic, so hierarchical placement can
decrease their PDL values by reducing the cross-rack repair
traffic. However, for RS(9,6) and LRC(16,12,2), although
hierarchical placement reduces BR, it has worse PDL and
NOMDL than flat placement as it sacrifices rack-level fault
tolerance and becomes more vulnerable to correlated failures.

TABLE 2
Comparison of PDL (with the relative error) and running time per

iteration with and without importance sampling.

Erasure codes β PDLis PDLreg Tis(s) Treg(s)

RS(9,6), r = 9 0.095 3.12e-2±18% 2.78e-2±18% 15.9 90.8

RS(9,6), r = 3 0.143 6.11e-3±13% 6.22e-3±22% 16.4 99.4

RS(14,10), r = 14 0.090 1.01e-2±10% 4.72e-3±23% 24.4 91.2

RS(14,10), r = 7 0.105 4.16e-3±16% 2.44e-3±28% 24.0 105.6

RS(16,12), r = 16 0.069 5.93e-2±4% 2.58e-2±19% 21.9 105.8

RS(16,12), r = 4 0.090 1.34e-2±9% 1.90e-3±32% 22.2 103.2

LRC(16,12), r = 16 0.094 3.69e-2±17% 3.27e-2±20% 20.0 197.2

LRC(16,12), r = 4 0.150 4.43e-3±15% 5.76e-3±23% 20.9 202.4

DRC(9,6,3) 0.280 2.41e-4±20% 2.50e-4±88% 17.7 110.4

Note that DRC(9,6,3) still achieves higher reliability than
RS(9,6) with r = 3.

5.4 Impact of Importance Sampling
We now study the impact of importance sampling (based on
uniformization-based balanced failure biasing) in terms of
the accuracy and performance of SIMEDC. Based on previous
studies [12], [20], [24], we configure β as the average repair
rate for repairing a permanent failure (i.e., the ratio of the
cross-rack bandwidth to the cross-rack repair traffic as shown
in Table 1) and Pfb = 0.5. Here, we focus on the PDL analysis
under independent permanent failures, as transient failures
do not affect the PDL results. We also disable correlated
failures as in Section 5.2.

Table 2 compares the results with importance sampling
and the results of regular simulation (i.e., without importance
sampling) with the cross-rack bandwidth of 1 Gb/s. We
first compare their PDLs (denoted by PDLis and PDLreg ,
respectively). We observe that while PDLis differs from
PDLreg for each erasure code, the results of importance
sampling still preserve the following two types of relative
differences: (i) the relative differences across different erasure
codes under the flat placement (i.e., different (n, k) for
n = r) and (ii) the relative differences between the flat
and hierarchical placements for the same erasure code (i.e.,
different r for the same (n, k)).

We next evaluate the running time per iteration of
importance sampling and regular simulation (denoted by Tis
and Treg , respectively). We observe that importance sampling
reduces the running time by 73-90% since importance sam-
pling increases the occurrences of the failure/repair events
before a data loss occurs or the mission time is reached.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

1e−04

1e−03

1e−02

1e−01

1e+00

R
S(9

,6
),r

=9

R
S(9

,6
),r

=3

R
S(1

4,
10

),r
=1

4

R
S(1

4,
10

),r
=7

R
S(1

6,
12

),r
=1

6

R
S(1

6,
12

),r
=4

LR
C
(1

6,
12

),r
=1

6

LR
C
(1

6,
12

),r
=4

D
R
C
(9

,6
,3

)

P
D

L

1e−10

1e−09

1e−08

1e−07

1e−06

R
S(9

,6
),r

=9

R
S(9

,6
),r

=3

R
S(1

4,
10

),r
=1

4

R
S(1

4,
10

),r
=7

R
S(1

6,
12

),r
=1

6

R
S(1

6,
12

),r
=4

LR
C
(1

6,
12

),r
=1

6

LR
C
(1

6,
12

),r
=4

D
R
C
(9

,6
,3

)

N
O

M
D

L

0e+00

1e−03

2e−03

3e−03

R
S(9

,6
),r

=9

R
S(9

,6
),r

=3

R
S(1

4,
10

),r
=1

4

R
S(1

4,
10

),r
=7

R
S(1

6,
12

),r
=1

6

R
S(1

6,
12

),r
=4

LR
C
(1

6,
12

),r
=1

6

LR
C
(1

6,
12

),r
=4

D
R
C
(9

,6
,3

)

B
R

(a) PDL (b) NOMDL (c) BR

Fig. 6. Reliability under both independent and correlated failures.

●

●
●

●
●

●
●

1e−04

1e−03

1e−02

1e−01

1e+00

0.7 0.8 0.9 1.0 1.1 1.2 1.3

α

P
D

L

●

RS(9,6), r=9

RS(9,6), r=3

Fig. 7. Impact of β on PDL, where
β = αR.

●

●

●

●

●

●

●

●

●1e−04

1e−03

1e−02

1e−01

1e+00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pfb

P
D

L

●

RS(9,6), r=9

RS(9,6), r=3

Fig. 8. Impact of Pfb on PDL.

Impact of β: We now evaluate the impact of different values
of β. Here, we set β = αR, where R denotes the average
repair rate of a permanent failure and α is the weight that we
vary in our evaluation (by default, we set α = 1). Figure 7
presents the PDL of RS(9,6) with varying β based on different
values of α. We observe that the PDL decreases with β, but
remains at the same order of magnitude when α is between
0.9 and 1.2. This confirms the rationale of setting β to be close
to the average repair rate. Note that the PDL of RS(9,6) with
r = 3 (hierarchical placement) remains lower than with r = 9
(flat placement) for different values of β, which conforms to
our analysis in regular simulation.
Impact of Pfb: We now study the PDL for different values
of Pfb. Figure 8 shows the PDL of RS(9,6) versus Pfb. We
observe that if Pfb is too low (e.g., Pfb = 0.1), the PDL is
close to one, making our analysis inaccurate. On the other
hand, if Pfb > 0.1, the PDL of RS(9,6) with r = 3 remains
lower than with r = 9 due to the reduction of cross-rack
repair traffic.

5.5 Trace Analysis
We now evaluate the reliability of different erasure code
settings based on production traces of failure and repair
events. We consider traces (downloadable from [1]) from
high performance computing (HPC) environments reported
by Schroeder et al. [31]. The traces span 22 HPC systems of
one to 1,024 nodes each at Los Alamos National Laboratory.
They contain failure records about node failures. Each record
includes the time when the failure starts, the time when it is
repaired, the root cause labeled by system operators, etc.

In our analysis, we focus on large-scale HPC systems with
at least 128 nodes each and deploy them as hierarchical data
centers. Thus, we select a total of 14 HPC systems, whose
system IDs are 4-11 and 13-18 [31]. They have 128, 164, 256,
512, or 1024 nodes each, and we partition the nodes evenly
into 16, 41, 32, 32, and 32 racks, respectively. We follow
the default settings in Section 5.1 to configure each system.

Note that the traces span less than the system mission time
(10 years in our case). In our simulation, after a trace reaches
the end, we replay it from the beginning to end, and repeat
the replay process until the system mission time is reached.

We parse the failure records and categorize the failures
based on their root cause labels. If the root causes are
related to network slowdown, maintenance, or power outage
(e.g., “Network”, “Console Network Device”, “Maintenance”,
“Power Outage”, and “Power Spike”), we treat them as
transient node failures and obtain their repair times directly
from the failure records. If the root causes are related to disks
(e.g., “Disk Drive”, “SCSI Controller”, “SAN Controller”),
we treat them as permanent node failures (which also bring
down the attached disks). We set the repair times based
on the amount of cross-rack repair traffic and cross-rack
bandwidth to reflect how much failed data needs to be
repaired. For permanent disk failures and transient rack
failures, we do not observe them in our traces, but we still
generate them based on the models in Table 1. For permanent
correlated failures, we do not specifically generate them, but
we observe that a contiguous set of nodes fail within a short
time in our traces (see discussion below).

We mainly compare RS(9,6) with r = 9 and r = 3, as well
as DRC(9,6,3). As in our previous experiments that derive
failure and repair events from statistical models, we find
that single-chunk repairs still dominate and account for over
98.2% of all repairs. Also, we find that eight of the 14 systems
(whose IDs are 9, 10, 11, 13 and 15-18) have almost zero
values in all three metrics, so we only plot the results for the
remaining six systems, as shown in Figure 9. For system IDs
4, 6, 7, and 14, we observe the same trends in as our previous
experiments. That is, hierarchical placement is more reliable
than flat placement, and DRC achieves the best reliability by
minimizing the cross-rack repair traffic.

However, we find that for system ID 5, RS(9,6) under
hierarchical placement has the worst reliability, while for
system ID 8, it has the highest PDL and NOMDL. Our
investigation finds that some contiguous nodes fail within
a short time. For example, for system ID 5, we observe
that nodes 16-19 in the same rack fail within 13 hours. For
hierarchical placement, if three chunks of a stripe are stored
in those failed nodes, then an additional failed chunk will
lead to data loss before they are repaired. Flat placement is
more robust against this type of contiguous node failures
by storing only one chunk of a stripe in a distinct rack.
Nevertheless, DRC(9,6,3) still achieves the best reliability
among all three erasure code settings.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

1e−04

1e−03

1e−02

1e−01

1e+00

4 5 6 7 8 14

System ID

P
D

L

RS(9,6),r=9 RS(9,6),r=3 DRC(9,6,3)

1e−10

1e−08

1e−06

1e−04

4 5 6 7 8 14

System ID

N
O

M
D

L

RS(9,6),r=9 RS(9,6),r=3 DRC(9,6,3)

0e+00

1e−03

2e−03

3e−03

4 5 6 7 8 14

System ID

B
R

RS(9,6),r=9 RS(9,6),r=3 DRC(9,6,3)

(a) PDL (b) NOMDL (c) BR

Fig. 9. Reliability under trace-driven failures. Although the sequence of events from traces is deterministic, we still observe relative errors in PDL,
mainly because we generate permanent disk failures and transient rack failures from statistical models and the chunk positions vary across iterations.

5.6 Summary
We summarize the key findings of our simulation as follows.
• When there are independent failures only, hierarchical

placement generally achieves better reliability than flat
placement by reducing the cross-rack repair traffic. Among
all erasure code settings, DRC achieves the best reliability.
In particular, the BR increases with the amount of cross-
rack repair traffic.

• The significance of reducing cross-rack repair traffic is more
prominent in extreme scenarios (e.g., when the available
cross-rack bandwidth is limited).

• When there are correlated failures, hierarchical placement
may have higher PDL and NOMDL than flat placement as
it tolerates fewer rack failures. Nevertheless, for erasure
codes with high repair traffic (e.g., RS(14,10) and RS(16,12)),
hierarchical placement still achieves better reliability.

• SIMEDC can accelerate simulations via importance sam-
pling, while preserving the accuracy of reliability analysis.

• We make consistent observations for both statistically
generated and trace-driven failure and repair events.

6 RELATED WORK

We review related work on reliability studies of distributed
storage systems, from modeling and simulation perspectives.
Modeling: Most reliability studies are based on Markov
modeling, under the assumptions that both failure and repair
times follow exponential distributions. Weatherspoon and
Kubiatowicz [37] show via Markov modeling that erasure
coding incurs significantly less bandwidth and storage
overhead than replication for the same reliability. Rao et al.
[26] model the redundancy within and across storage nodes.
They show that the reliability heavily depends on the node
repair time, which depends on the amount of data transferred
for repair. Ford et al. [10] model stripe availability of
Google storage subject to factors such as redundancy policies,
recovery rates, and the presence of correlated failures. Some
studies (e.g., [18], [30]) also analyze the reliability of new
repair-friendly erasure code constructions based on Markov
modeling. While the correctness of Markov modeling for
reliability analysis is questionable [14], Iliadis et al. [19] justify
the usefulness of Markov modeling and related non-Markov
approaches for obtaining the MTTDL metrics.

In the context of chunk placement, Greenan et al. [13] use
reliability modeling to determine the chunk placement of
flat XOR-based erasure codes. Venkatesan et al. [36] analyze
the reliability of erasure-coded storage with respect to chunk

placement and repair rates. Hu et al. [17] present simplified
Markov models to compare flat and hierarchical placements
under special cases. Our work takes a simulation approach
and complements existing modeling studies by considering
more general and complicated failure/repair patterns.
Simulation: Several storage reliability simulators have been
proposed in the literature. Greenan [12] presents the High-
Fidelity Reliability Simulator (HFRS) for reliability simu-
lation on disk arrays. We extend HFRS for data center
environments. Silberstein et al. [35] develop a simulator
to show the effectiveness of lazy repair (i.e., the repair
of a stripe is deferred until its number of failed chunks
exceeds a threshold) in distributed storage, but they do not
consider hierarchical data centers. Fu et al. [11] conduct
simulation analysis to study the reliability of primary storage
when deduplication is deployed. Epstein et al. [9] combine
simulation and combinatoric computations to estimate the
durability of storage system, and take into account the
available network bandwidth in the repair process. Hall
[15] presents a simulator framework called CQSim-R, which
evaluates the reliability in data center environments, and
also studies the effects of chunk placement. Our work differs
from previous simulators by specifically taking into account
the impact of cross-rack repair traffic given the hierarchical
nature of data centers. In addition, we consider more com-
plicated failure patterns, including correlated failures and
empirical failure traces; in CQSim-R [15], only independent
disk-drive failures are considered.

7 CONCLUSIONS

We present SIMEDC, a discrete-event simulator that charac-
terizes the reliability of erasure-coded data centers. SIMEDC
specifically addresses the hierarchical nature of data centers
and analyzes how various erasure code constructions and
chunk placement schemes affect the overall storage reliability
due to different amounts of cross-rack repair traffic. We
demonstrate how SIMEDC can accelerate the simulation
process via importance sampling. We present extensive
reliability analysis results based on SIMEDC. In future work,
we plan to extend SIMEDC to support different repair
scheduling strategies, such as parallelization of a single-
chunk repair operation [21], [22].

ACKNOWLEDGMENTS

This work was supported in part by the Research Grants
Council of Hong Kong (GRF 14216316 and CRF C7036-15G).



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

REFERENCES

[1] Failure Trace Archive. http://fta.scem.uws.edu.au/index.php?n=
Main.Download.

[2] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar.
ShuffleWatcher: Shuffle-aware Scheduling in Multi-tenant MapRe-
duce Clusters. In Proc. of USENIX ATC, 2014.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity
Data Center Network Architecture. In Proc. of ACM SIGCOMM,
2008.

[4] R. J. Chansler. Data Availability and Durability With the Hadoop
Distributed File System. The USENIX Magzine, 37(1), 2012.

[5] M. Chowdhury, S. Kandula, and I. Stoica. Leveraging Endpoint
Flexibility in Data-Intensive Clusters. In Proc. of ACM SIGCOMM,
2013.

[6] A. Cidon, R. Escriva, S. Katti, M. Rosenblum, and E. G. Sirer.
Tiered Replication: A Cost-effective Alternative to Full Cluster
Geo-replication. In Proc. of USENIX ATC, 2015.

[7] J. Dean. Designs, Lessons and Advice from Building Large Dis-
tributed Systems. http://www.cs.cornell.edu/projects/ladis2009/
talks/dean-keynote-ladis2009.pdf.

[8] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and
K. Ramchandran. Network Coding for Distributed Storage Systems.
IEEE Trans. on Info. Theory, 56(9):4539–4551, 2010.

[9] A. Epstein, E. K. Kolodner, and D. Sotnikov. Network Aware
Reliability Analysis for Distributed Storage Systems. In Proc. of
IEEE SRDS, 2016.

[10] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan. Availability in Globally
Distributed Storage Systems. In Proc. of USENIX OSDI, 2010.

[11] M. Fu, P. P. C. Lee, D. Feng, Z. Chen, and Y. Xiao. A Simulation
Analysis of Reliability in Primary Storage Deduplication. In Proc.
of IEEE IISWC, 2016.

[12] K. M. Greenan. Reliability and Power-efficiency in Erasure-coded
Storage Systems. UC Santa Cruz, Tech. Rep. UCSC–SSRC–09–08,
2009.

[13] K. M. Greenan, E. L. Miller, and J. J. Wylie. Reliability of Flat
XOR-based Erasure Codes on Heterogeneous Devices. In Proc. of
IEEE DSN, 2008.

[14] K. M. Greenan, J. S. Plank, and J. J. Wylie. Mean Time to Meaning-
less: MTTDL, Markov Models, and Storage System Reliability. In
Proc. of USENIX HotStorage, 2010.

[15] R. J. Hall. Tools for Predicting the Reliability of Large-Scale Storage
Systems. ACM Trans. on Storage, 12(4):24, 2016.

[16] Y. Hu, P. P. C. Lee, and X. Zhang. Double Regenerating Codes for
Hierarchical Data Centers. In Proc. of IEEE ISIT, 2016.

[17] Y. Hu, X. Li, M. Zhang, P. P. C. Lee, X. Zhang, P. Zhou, and D. Feng.
Optimal Repair Layering for Erasure-Coded Data Centers: From
Theory to Practice. ACM Trans. on Storage, 13(4), 2017.

[18] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin. Erasure Coding in Windows Azure Storage. In
Proc. of USENIX ATC, 2012.

[19] I. Iliadis and V. Venkatesan. Rebuttal to ”Beyond MTTDL: A Closed-
Form RAID-6 Reliability Equation”. ACM Trans. on Storage, 11(2):9,
2015.

[20] P. W. Lewis and G. S. Shedler. Simulation of Nonhomogeneous
Poisson Processes by Thinning. Naval Research Logistics Quarterly,
26(3):403–413, 1979.

[21] R. Li, X. Li, P. P. C. Lee, and Q. Huang. Repair Pipelining for
Erasure-Coded Storage. In Proc. of USENIX ATC, 2017.

[22] S. Mitra, R. Panta, M.-R. Ra, and S. Bagchi. Partial-Parallel-Repair
(PPR): A Distributed Technique for Repairing Erasure Coded
Storage. In Proc. of ACM EuroSys, 2016.

[23] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan,
S. Shankar, V. Sivakumar, L. Tang, and K. Sanjeev. f4: Facebooks
Warm Blob Storage System. In Proc. of USENIX OSDI, 2014.

[24] V. F. Nicola, P. Heidelberger, and P. Shahabuddin. Uniformization
and Exponential Transformation: Techniques for Fast Simulation of
Highly Dependable non-Markovian Systems. IBM Research Division,
TJ Watson Research Center, 1992.

[25] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly.
The Quantcast File System. In Proc. of VLDB Endowment, 2013.

[26] K. Rao, J. L. Hafner, and R. A. Golding. Reliability for Networked

Storage Nodes. IEEE Trans. on Dependable and Secure Computing,
8(3):404–418, May/June 2011.

[27] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran. A Solution to the Network Challenges of Data
Recovery in Erasure-coded Distributed Storage Systems: A Study
on the Facebook Warehouse Cluster. In Proc. of USENIX HotStorage,
2013.

[28] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran. A Hitchhiker’s Guide to Fast and Efficient Data
Reconstruction in Erasure-coded Data Centers. In Proc. of ACM
SIGCOMM, 2014.

[29] I. S. Reed and G. Solomon. Polynomial Codes over Certain Finite
Fields. Journal of the Society for Industrial and AppliedMathematics,
8(2):300–304, 1960.

[30] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. Xoring Elephants: Novel
Erasure Codes for Big Data. In Proc. of VLDB Endowment, 2013.

[31] B. Schroeder and G. Gibson. A Large-Scale Study of Failures in
High-Performance Computing Systems. IEEE Trans. on Dependable
and Secure Computing, 7(4):337–350, 2010.

[32] B. Schroeder and G. A. Gibson. Disk Failures in the Real World:
What does an MTTF of 1,000,000 Hours Mean to You? In Proc. of
USENIX FAST, 2007.

[33] Z. Shen, J. Shu, and P. P. C. Lee. Reconsidering Single Failure
Recovery in Clustered File Systems. In Proc. of IEEE DSN, 2016.

[34] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop
Distributed File System. In Proc. of IEEE MSST, 2010.

[35] M. Silberstein, L. Ganesh, Y. Wang, L. Alvisi, and M. Dahlin. Lazy
Means Smart: Reducing Repair Bandwidth Costs in Erasure-coded
Distributed Storage. In Proc. of ACM SYSTOR, 2014.

[36] V. Venkatesan and I. Iliadis. Effect of Codeword Placement on
the Reliability of Erasure Coded Data Storage Systems. In Proc. of
QEST, 2013.

[37] H. Weatherspoon and J. D. Kubiatowicz. Erasure Coding Vs.
Replication: A Quantitative Comparison. In Proc. of IPTPS, 2002.

[38] M. Zhang, S. Han, and P. P. C. Lee. A Simulation Analysis of
Reliability in Erasure-Coded Data Centers. In Proc. of IEEE SRDS,
2017.

Mi Zhang received the B.Eng. degree in Software
Engineering from Shandong University in 2014.
She is now pursuing her Ph.D. degree in Com-
puter Science and Engineering at the Chinese
University of Hong Kong. Her research interests
include distributed systems and storage reliability.

Shujie Han is currently a Ph.D. student in the
Department of Computer Science and Engineer-
ing at the Chinese University of Hong Kong. Her
research interests include data deduplication,
reliability, etc.

Patrick P. C. Lee received the B.Eng. degree
(first-class honors) in Information Engineering
from the Chinese University of Hong Kong in
2001, the M.Phil. degree in Computer Science
and Engineering from the Chinese University
of Hong Kong in 2003, and the Ph.D. degree
in Computer Science from Columbia University
in 2008. He is now an Associate Professor of
the Department of Computer Science and Engi-
neering at the Chinese University of Hong Kong.
His research interests are in storage systems,

distributed systems and networks, and cloud computing.


