
FedSSA: Reducing Overhead of Additive Cryptographic
Methods in Federated Learning with Sketch

Zirui Ou†, Shujie Han‡, Qihuan Zeng§, and Qun Huang†
†School of Computer Science, Peking University

‡School of Computer Science, Northwestern Polytechnical University
§Peking University

{zirui.ou, huangqun}@pku.edu.cn, shujiehan@nwpu.edu.cn, 2000013149@stu.pku.edu.cn

Abstract—Federated Learning (FL) has been applied across
diverse domains as a powerful technique but faces critical
challenges in privacy protection. Secure aggregation and additive
homomorphic encryption are two of the most commonly used
cryptographic methods to protect model updates. To provide a
strong privacy guarantee, both methods satisfy the additivity and
require the integer form to encrypt model updates. However, they
still suffer from a non-negligible overhead of the computation and
communication. To mitigate such overhead, existing approaches
of lossy compression (e.g., gradient compression) have been
explored but exhibit the inapplicability of FL with additive
cryptographic methods. In this paper, we propose FEDSSA, a
novel compression framework to reduce the overhead of additive
cryptographic methods in FL based on two new techniques:
(i) QSRHT Sketch, a sketch-based compression method that
supports large compression ratios with a bounded error with
the integer requirement, and (ii) periodic rehashing, which
ensures the unbiasedness of QSRHT Sketch. Our evaluation
shows that FEDSSA achieves a high compression ratio (×160)
with a low model accuracy degradation (less than 5%). For
additive homomorphic encryption, FEDSSA reduces the average
computation time per round by up to 58.15% compared to
state-of-the-art compressor that support additive homomorphic
encryption, with a low test accuracy drop (within 2.2%).

I. INTRODUCTION

Federated Learning (FL) is a machine learning paradigm
to maintain data privacy via training models on decentralized
data sources. It has been widely applied in various domains,
including intelligent personal assistants [1], healthcare [2], and
financial support [3]. A typical training procedure of FL has
two parties [4], i.e., a logically centralized server (server for
short) and multiple decentralized clients (clients for short). The
training procedure iterates for multiple rounds. In each round,
clients train a shared model using their local data and send
only model updates (usually gradients) to the server, instead
of raw data as in traditional machine learning.

The concern of privacy leakage is crucial in FL. Despite
clients keeping their local data away from the server, the server
can still infer sensitive information from individual model
updates. Specifically, the server can reconstruct the client’s
sensitive data from individual model updates through data re-
construction attacks or gradient inversion attacks [5]–[8]. This
poses a privacy vulnerability in the client’s local dataset. To
this end, a large body of existing research has tackled this issue

with privacy-preserving methods using cryptographic schemes
[9]–[12]. These methods are provably secure and can provide
a strong privacy guarantee. Among them, secure aggregation
[10], [13], [14] and additive homomorphic encryption [11],
[15], [16] are two of the most commonly used methods.
Both methods are referred to as the additive cryptographic
methods, where the additivity means the sum operation can
be directly applied to encrypted model updates and yield
meaningful aggregated results. Such additive cryptographic
methods execute encryption and decryption procedures in
integer fields, meaning that the plaintext (i.e. model updates)
should be in the integer form [15], [17].

While additive cryptographic methods provide strong pri-
vacy guarantees, they still incur significant overhead during
computational and communication procedures. Specifically,
computational overhead in these methods primarily results
from complex modular operations during encryption or de-
cryption processes [16], while the communication overhead is
mainly caused by the slow communication connection between
clients and the server. Even worse, secure aggregation and
additive homomorphic encryption cause the data inflation
problem, where the ciphertext may be larger than the raw
model updates [16], [17]. This further exacerbates the commu-
nication overhead and slows down the FL training procedure.
Notably, the overhead of these methods are proportional to the
size of the plaintext (i.e. the model updates of each client).

To mitigate these overheads, adopting gradient compres-
sion to reduce the size of model updates seems intuitive.
Unfortunately, existing gradient compression methods [18]–
[22] exhibit the following limitations which makes them
unsuitable for FL with additive cryptographic methods. First,
many of them lack additivity, which renders them incompatible
with additive cryptographic methods [18]–[20], [23], [24].
Second, certain methods only support a low compression ratio
[16], [25]. Therefore, these methods can only offer a limited
overhead reduction for additive cryptographic methods. Third,
some of the gradient compression methods generate biased
model updates, which compromises the model accuracy [26].

In this paper, we propose FEDSSA, which adopts the
sketch-based compression method to address the above limita-
tions. Sketch belongs to a family of randomized data structures
that compress large datasets using compact arrays and ran-
dom hash functions. We adopt the Subsampled Randomized979-8-3503-5171-2/24/$31.00 ©2024 IEEE

Hadamard Transform (SRHT) Sketch [27], [28], a well-
established technique in traditional machine learning. SRHT
Sketch is additive and supports a large compression ratio with
bounded error. However, SRHT Sketch faces compatibility
challenges with additive cryptographic methods for two main
reasons. First, to meet the integer requirement of additive cryp-
tographic methods, SRHT Sketch should convert its fractional
elements into integers with bounded error. When compressing
model updates, SRHT Sketch takes fractional model updates
as input and generates fractional elements. Converting each
fractional element into an integer using operations like floor
or ceiling functions may seem straightforward. However, these
methods may introduce unbounded errors due to the precision
loss of directly discarding the fractional parts. Second, it is
important to efficiently refresh hash functions to guarantee
independence. SRHT Sketch relies on the independence of
these hash functions to generate unbiased model updates in
each round. While refreshing the hash functions can main-
tain independence, it is challenging to do so efficiently and
correctly. The clients can send requests for the latest hash
functions. However, this would cause additional processing
overhead on the server side when multiple clients send requests
simultaneously. Also, it is crucial to update hash functions
correctly on the client side. If the hash function is updated
before the client decompresses using the old one, it leads to
incorrect model updates and introduces errors.

FEDSSA overcomes the above challenges with two new
techniques. For the first challenge, FEDSSA adopts QSRHT
Sketch, which enhances SRHT Sketch [27], [28] with a
quantization step. In this step, QSRHT Sketch maps each
fractional element to an integer with unbiased estimation and a
bounded error guarantee. For the second challenge, FEDSSA
proposes an efficient protocol called periodic rehashing that
refreshes the hash functions of QSRHT Sketch every round
and maintains the correctness of hash function usage. We
conduct a comprehensive evaluation by comparing FEDSSA
to 7 state-of-the-art baselines including 2 secure aggregation-
based compressors [29], 1 additive homomorphic encryption
compressor [16], and 4 gradient compressors without privacy
protection [22], [30], [31]. Our evaluation on two tasks (i.e.,
ResNet9 [32] on CIFAR-10 and ResNet18 [33]on CIFAR-100)
shows that FEDSSA achieves a high compression ratio of up
to ×160 with no more than 5% model accuracy degradation.
When comparing to baseline compressors, FEDSSA achieves
comparable test accuracy under the same compression ratio.
Moreover, FEDSSA with a larger compression ratio can reduce
the average computation time per round by up to 58.15%
compared to the additive homomorphic encryption-based com-
pressor, with a test accuracy within 2.2%.

II. BACKGROUND AND MOTIVATION

A. Federated Learning

Federated Learning (FL) is a collaborative machine-learning
approach including two parties: a centralized server and
multiple decentralized clients [4]. The server coordinates the
training of a global model among clients with multiple rounds.

In each round, each client trains a local model using its local
data and sends model updates (i.e., gradients) to the server
for aggregation. The server aggregates local models into the
global model and sends them back to clients for training in
the next round. The process iterates until the desired number
of rounds or the target model accuracy is achieved.
Privacy leakage and threat model. Despite clients keeping
their local data away from the server, the server can still infer
sensitive information from individual model updates [5]–[8].
For example, it can accurately reconstruct a client’s training
data through a data reconstruction attack based on gradient
updates. In this paper, we consider a threat model where both
the server and clients are honest-but-curious, which is standard
in the context of FL [5], [10], [16], [34]. In this model, the
server faithfully aggregates model updates from clients, but it
attempts to infer the private information of each client. Clients
execute local training faithfully and do not collude with the
server or other clients. Although some existing works consider
the potential privacy leakage caused by a client dropout or
straggler [34], [35], in our threat model, we do not consider
these scenarios as most of these situations can be managed by
off-the-shelf privacy protection mechanisms [10]. We leave the
exploration of these issues for future work.

B. Secure Aggregation and Additive Homomorphic Encryption

To protect the privacy, secure aggregation [10], [13], [14]
and additive homomorphic encryption [11], [15], [16], [36] are
two widely used cryptographic methods in FL to ensure the
confidentiality of individual model updates. They require the
following properties in use.

• Additivity. The property ensures that the additive operation
can directly apply to the encrypted model updates for gen-
erating aggregated results. Also, decrypting the aggregated
results yields the corresponding aggregated model updates.
Thus, the plaintext (i.e., model updates) should also be addi-
tive. Without additivity, it is impossible to obtain aggregated
model updates by decrypting the aggregated results.

• Integer arithmetic. Both methods perform encryption and
decryption procedures on the integer field. Thus, the model
updates should be in integer form.

Secure aggregation. Secure aggregation (SA) is a widely
employed privacy protection method in FL [10], [13], [14]. In
each round, SA involves clients generating cancellable integer
masks that mutually cancel out when summed. After that,
clients encrypt their model updates by adding up the corre-
sponding masks to obtain ciphertexts and send the ciphertexts
to the server. The server then directly sums the ciphertexts
to obtain aggregated model updates without decrypting indi-
vidual contributions. This works because the integer masks
cancel each other out when the ciphertexts are summed,
which makes the aggregated sum identical to the sum of the
original model updates. This procedure ensures that the server
cannot learn individual model updates beyond their aggregated
sum. Note that the server’s access to the aggregated result
does not compromise each client’s privacy for two reasons.

ResNet9 ResNet18
0

100

200

300

400

Av
er

ag
e

Ti
m

e(
s)

Encrypt Decrypt Train Aggregate Idle

ResNet9 ResNet18
0

100

200

300

400

500
Av

er
ag

e
Ti

m
e(

s)

ResNet9 ResNet18
0

100

200

300

400

500

Av
er

ag
e

Ti
m

e(
s)

(a) Client-side (b) Server-side
Figure 1: Average time per round breakdowns for client and server.

First, SA is designed so that the server can only access the
aggregated model updates instead of the individual updates
[10], [14]. This aggregation inherently prevents the server
from reconstructing individual contributions. Second, SA can
be combined with differential privacy techniques to further
enhance privacy protection by adding controlled noise to the
results [10], [35], [37], which is complementary to our work.
Additive homomorphic encryption. Additive homomorphic
encryption (AHE) is a variant of homomorphic encryption
which supports the additive operation on ciphertexts [15], [38].
In each round, clients first agree on a pair of public key and
private key. Subsequently, each client encrypts their model
updates with the agreed public key and sends the ciphertext to
the server. The server then sums the ciphertexts and dispatches
the results back to all clients. After that, each client decrypts
the results locally with the private key and obtains the cor-
responding aggregated model updates. Throughout the entire
aggregation process, the intermediate results are protected by
AHE and cannot be learned by the server.

C. Motivation

The additive cryptographic methods provide strong security
guarantees but still incur a significant overhead of computation
and communication, which makes them impractical in use.
Overhead of AHE. AHE encounters significant computation
and communication overhead. The computation overhead is
mainly caused by complex modular operations performed
during the encryption and decryption procedures [16], [36],
[39], [40]. We evaluate the average time per round of two
tasks with AHE on both the client side and server side
(see Section V for more details). Figure 1(a) shows that the
encryption and the decryption procedure of AHE takes up most
of the computation time on the client side, while Figure 1(b)
shows that the server spent most of the time (i.e., idle time)
waiting for clients to finish computation, which takes up most
of the average time per round. The aggregation procedure
on the server side is negligible, which is not shown in the
figure. Thus, the computation of AHE on clients becomes
the bottleneck of the training procedure. Also, the commu-
nication overhead of AHE is mainly attributed to the data
inflation problem [16]. For instance, the Paillier Homomorphic
Encryption requires the use of a 2048-bit public key for
security, which results in a large increase in message size.
When encrypting a gradient of 32 bits with a 2048-bit public
key, the message size inflates by a factor of 64. Given that the

Table I: Requirements of additivity (A), integer (I), large compres-
sion ratios (L), and unbiasedness (U).

Requirements
A I L U

SA ✔ ✔
AHE ✔ ✔

sketch-based methods ✔ ✘ ✔ ✘
SRHT Sketch ✔ ✘ ✔ ✔

communication often occurs over slow network connections
with limited bandwidth [21], [22], the data inflation problem
further exacerbates the communication overhead.
Overhead of SA. SA also faces non-negligible communication
overhead mainly due to data inflation. To avoid overflow in
the aggregation procedure, SA reserves additional bandwidth,
which results in the data inflation issue similar to AHE [17].

D. Compression of Model Updates

As the computation and communication overhead of ad-
ditive cryptographic methods is proportional to the size of
model updates, reducing it can alleviate such overhead. Several
methods such as traditional gradient compression [18]–[22]
and sketch-based gradient compression [22], [37], [41], [42]
have been applied in distributed machine learning and FL.
Traditional gradient compression. We classify traditional
gradient compression methods into two categories, namely
gradient sparsification and gradient quantization. Gradient
sparsification approaches [19], [20], [23], [43] reduce the
size of model updates by reserving only part of the model
updates. And gradient quantization approaches [16], [25], [44]
conduct lossy compression by reducing the precision of each
element. However, both gradient sparsification and gradient
quantization methods have some limitations. First, many ex-
isting gradient compression methods lack of additivity, which
may lead to erroneous aggregated results when summing the
ciphertexts of compressed model updates [19], [20], [23], [25],
[43], [45]. Second, both methods struggle for the balance
between the reduction of model size and the model accuracy.
To reduce the model size, some existing gradient sparsification
methods [18], [19], [24], [46] introduce biased model update
estimations with biased operators like top-k [24], which leads
to a significant model accuracy drop. Also, to maintain the
model accuracy, gradient quantization methods [16], [25], [44]
only achieve a limited compression ratio of no more than ×8.
Sketch-based methods. Sketch-based gradient compression
methods [22], [37], [41], [42] reduces the size of model
updates based on sketch. Sketch belongs to a family of
randomized data structures that compress large datasets using
compact arrays and random hash functions [47], [48]. Typ-
ically, sketches are associated with three operations, namely
compression, decompression, and aggregation. Many sketches
are naturally additive and support a large compression ratio
with bounded error [27], [47], [48]. Among them, the Subsam-
pled Randomized Hadamard Transform (SRHT) Sketch [27],
[28] is widely used in traditional machine learning. However,
existing sketch-based methods still have several limitations.
As shown in Table I, although these methods [22], [37], [41]

inherit the strengths of sketches, they do not satisfy the integer
requirement and lack unbiasedness. While SRHT Sketch is
attractive because of its unbiasedness, it still falls short of
meeting the integer requirement.

III. OVERVIEW

A. Design Goals and Challenges

FEDSSA is a compression framework of FL that supports
additive cryptographic methods with these design goals:
• Generality (G1). It should directly support additive crypto-

graphic methods for privacy protection.
• Efficiency (G2). It should significantly reduce the overhead.
• Accuracy (G3). It should retain a high model accuracy.

Specifically, FEDSSA is built on SRHT Sketch (see Sec-
tion II-D). SRHT Sketch can compress model updates with
large compression ratios, therefore reducing the model size and
the associated overhead (G2). Also, SRHT Sketch is unbiased,
which can retain a high model accuracy (G3). However, SRHT
Sketch does not meet the integer requirement. To make it
compatible with additive cryptographic methods, the challenge
is to maintain high model accuracy in two different aspects.
Challenge 1 (C1): Error-bounded integer conversion. Re-
call in Section II-B that additive cryptographic methods re-
quire the plaintext to be in integer form. However, SRHT
Sketch takes fractional model updates as input and generates
fractional elements. This discrepancy poses a challenge since
fractional elements cannot be encrypted by additive crypto-
graphic methods. While taking operations like floor or ceiling
function seems straightforward, these operations are biased
and compromise the unbiasedness of SRHT Sketch. Moreover,
they may introduce unbounded errors due to precision loss
from simply discarding fractional parts. Therefore, it is crucial
to convert the sketch elements into integers while maintaining
the unbiasedness and ensuring a bounded-error guarantee.
Challenge 2 (C2): Efficient refreshing to generate inde-
pendent hash functions. Recall in Section II-D that SRHT
Sketch compresses model updates with hash functions. The
independence of hash functions across rounds is crucial when
they are treated as random variables. Specifically, this indepen-
dence ensures the unbiasedness of SRHT Sketch [27]. Using
the same hash functions throughout the training procedure
breaks the independence of hash functions and leads to a
notable decline in model accuracy. While refreshing the hash
functions of SRHT Sketch is an intuitive idea to maintain
their independence, it is challenging to do so efficiently and
correctly. In particular, the refreshed hash functions should
be synchronized across the server and participating clients.
Clients can actively send requests to the server for the latest
hash functions, but this approach is inefficient and can burden
the server with additional processing overhead. Also, it is
crucial to update hash functions correctly on the client side.
If a client updates the hash functions before decompressing
with the old ones, it will result in incorrect model updates
and introduce errors into the federated learning procedure.

QSRHT
Decompression

Decryption

④

①Model Training

QSRHT
Compression

Encryption

②

③ Aggregation

QSRHT
Decompression

Decryption④

Client Server

AHE-based Workflow SA-based Workflow

Figure 2: FEDSSA workflow.

B. Our Solution

To address the aforementioned challenges, FEDSSA is
designed based on the following two techniques:
QSRHT Sketch. To address C1, we propose a new sketch
called QSRHT Sketch. QSRHT Sketch enhances SRHT Sketch
[27] with a quantization step. Specifically, it scales the frac-
tional elements to preserve the precision of QSRHT Sketch
with a parameter called the quantization scaling factor. To
meet the theoretical guarantee of unbiased estimation, it adopts
probabilistic quantization to map each fractional element into
an integer. The overall introduced error of QSRHT Sketch can
be bounded with a theoretical guarantee. Also, we prove that
QSRHT Sketch maintains the additivity in expectation, even
though the probabilistic quantization is a non-linear operation.
Periodic rehashing. To tackle C2, we present a new proto-
col called the periodic rehashing, which refreshes the hash
functions in QSRHT Sketch every round to maintain the inde-
pendence of hash functions. Specifically, the server sends the
latest hash functions along with the latest model parameters
back to clients. This can avoid the requests from clients for
new hash functions. After receiving the latest hash functions,
the client delays the hash function update procedure until it
correctly decompresses with old hash functions, which ensures
the correctness of hash function usage.

C. Architecture

FEDSSA includes two parties, namely the server and mul-
tiple clients. FEDSSA supports two workflows, namely SA-
based workflow and AHE-based workflow. SA-based workflow
supports secure aggregation while AHE-based workflow sup-
ports additive homomorphic encryption.
FEDSSA workflow. As shown in Figure 2, the workflow of
FEDSSA consists of four steps:
• Step (1): Model training. At the beginning of each round,

the server randomly selects a subset of available clients to
participate. These clients then acquire the global model and
train the model for multiple iterations using the local dataset.
In the SA-based workflow, clients fetch the global model
from the server, whereas in the AHE-based workflow, clients
utilize the locally stored global model.

• Step (2): Client processing. The client first updates the hash
functions of QSRHT Sketch. Then, the client compresses

Notation Meaning
Defined in Section IV-A

S counter array in QSRHT Sketch
m number of columns in S
D sign hash function {0, 1, ..., d− 1} → {−1, 1}
R index function {0, 1, ...,m− 1} → {0, 1, ..., d− 1}
g original model update vector before compression
g′ model update vector after decompression
d size of the model update vector g
i the i-th element in a vector of size d (0 ≤ i ≤ d− 1)
j the j-th element in a vector of size m (0 ≤ j ≤ m− 1)
H normalized Walsh-Hadamard matrix
α quantization scaling factor
Q quantization function
r compression ratio r = d/m
K number of selected clients

Defined in Section IV-B
t t-th round in communication
Dt sign hash function for round t
Rt index function for round t

Defined in Section IV-C
Cα(g) the estimation of g obtained by QSRHT Sketch

Defined in Section IV-D
w model parameters
E number of iterations for local training

F (w) loss function with w
gu
t,v the v-th gradient computed by client u in round t

Table II: Major notation used in Section IV.

local model updates with QSRHT Sketch and encrypts QS-
RHT Sketch using the corresponding cryptographic method.

• Step (3): Server aggregation. The server aggregates the
encrypted QSRHT Sketches from participating clients by
summing them together to obtain the aggregated results.

• Step (4): Post-processing. In the SA-based workflow, the
post-processing step occurs on the server side, while in the
AHE-based workflow, each client executes this step indi-
vidually. In this step, the corresponding party first decrypts
the results obtained in Step (3) to generate the aggregated
QSRHT Sketch. Then the party decompresses the aggre-
gated QSRHT Sketch to obtain an unbiased estimation of
aggregated model updates. The estimated model updates are
then used to refine the global model.

IV. DESIGN

A. QSRHT Sketch

We first introduce the data structure of QSRHT Sketch.
Then we introduce the operations of QSRHT Sketch, namely
compression, decompression and aggregation. We summarize
the major notations in Table II used in Section IV.
Data structure. A QSRHT Sketch comprises a counter ar-
ray (denoted by S) with m columns and two random hash
functions, including the sign hash function (denoted by D)
and the index hash function (denoted by R). Let g be a one-
dimensional vector of model updates with d elements, the
compression ratio of QSRHT Sketch is defined by r = d/m.
QSRHT Sketch compresses the model updates g into S via
D and R. The function D maps the sign of each element
in g to ±1 uniformly at random based on the index of the
element, i.e., {0, 1, ..., d − 1} → {−1, 1}. The function R

0.07

×

Random
Rotation

Uniform
Sampling

0.34
0.14
0.56
0.07
0.34
0.14
0.56

D(0) = 1
D(1) = 1
D(2) = 1
D(3) =-1
D(4) =-1
D(5) = 1
D(6) =-1
D(7) = 1

Sign Hash
Results

Model
Updates

H ×

Hadamard
Matrix

0.09
-0.09
0.39
-0.49
0.11
0.39
0.19
-0.19

× 10

Quantization

1
-1
4
-5
-1
4
2
-2

1
-5
4
-2

Counter
Array S𝜶

(a) Compression of QSRHT Sketch.

Restoring

-0.71
1.41
4.24
3.54
2.12
2.83
0

0.71

× 0.2

1
0
0
-5
0
4
0
-2

1
-5
4
-2

Counter
Array

1

×

Reverse
Random Rotation

0
0
-5
0
4
0
-2

D(0) = 1
D(1) = 1
D(2) = 1
D(3) =-1
D(4) =-1
D(5) = 1
D(6) =-1
D(7) = 1

Sign Hash
Results

H ×

-0.14
0.28
0.85
0.71
0.42
0.57
0

0.14

Rescaling

𝒅
𝒎𝜶

(b) Decompression of QSRHT Sketch.
Figure 3: The compression and decompression of QSRHT Sketch.

uniformly samples m elements from g with replacements, i.e.,
{0, 1, ...,m− 1} → {0, 1, ..., d− 1}.
Compression. Figure 3(a) shows the compression procedure
of QSRHT Sketch, which compresses g into S by three steps.
• Random rotation. QSRHT Sketch first randomly flips the

sign of each element in g and gets an intermediate vec-
tor gr = (D(0)× g0, ...D(i)× gi, ..., D(d− 1)× gd−1),
where gi denotes the i-th element in g. It then multiplies
gr by the normalized Walsh-Hadamard matrix [27] H and
obtains the rotated vector h = Hgr. The matrix H is defined
as H = 1√

d
Hd, where Hd is computed recursively via

Hd =

(
H d

2
H d

2

H d
2

−H d
2

)
from H2 =

(
1 1
1 −1

)
.

• Quantization. To preserve the precision of h, QSRHT
Sketch first scales h by multiplying the quantization scaling
factor (defined in Section III-B) (denoted by α) and obtains
a scaled vector αh. QSRHT Sketch then applies the proba-
bilistic quantization on the scaled vector αh element-wisely
to obtain the quantized result hq . Specifically, let Q be the
quantization function and hi be the i-th element in h. The
i-th element in hq is computed by Q(αhi), where

Q(x) =

{
⌊x⌋+ 1 with the probability p(x) = x− ⌊x⌋,
⌊x⌋ with the probability 1− p(x),

and ⌊x⌋ denotes the integer no more than an element x.
Thus, each element in hq is an integer and hq is an unbiased
estimation of the vector αh.

• Uniform sampling. To reduce the size of model updates
(i.e., d), QSRHT Sketch performs uniform sampling with
the index hash function R to choose m element from hq

and stores the sampled elements into S. Specifically, for the
j-th element in S, R(j) outputs the index of the selected
element in hq . Note that all elements in S are now integers.

Decompression. The decompression procedure is to restore
the original model update vector g from the counter array S.
Figure 3(b) shows the corresponding decompression procedure
of QSRHT Sketch, which consists of the following three steps:
• Restoring. QSRHT Sketch first restores the counter array

of m columns back to an intermediate vector (denoted by
h′) with d elements. The i-th element in h′ is computed by
h′
i =

∑
R(j)=i S[j].

• Reverse random rotation. This step can be viewed as
the reverse operation of the random rotation step. In this
step, QSRHT Sketch first multiplies the corresponding
sign hash function to obtain the intermediate result g′

r =
(D(0)× h′

0, ...D(i)× h′
i, ...D(d)× h′

d). Then it multiplies
the matrix H with g′

r to obtain gh = Hg′
r.

• Rescaling. Finally, QSRHT Sketch rescales gh to obtain
the unbiased estimation of the original vector g′ = d

mαgh,
which is the final result of the decompression operation.

Aggregation. The aggregation operation of QSRHT Sketch
is used by the server to aggregate QSRHT Sketches from
clients. When two QSRHT Sketches have the same parameters
(i.e. d, m, and α), they can be aggregated by summing the
corresponding values in the counter arrays (see Theorem 2 in
Section IV-C).
Selection of quantization scaling factor α. The quantization
scaling factor α determines the precision preserved in model
updates. A larger α preserves more precision for the floating-
point values. However, an excessively large α may cause
numerical overflow in the scaled vector (αh) and introduce
errors. Denote the number of participating clients by K. To
determine a proper α, we select α such that α >

√
dr
K at the

beginning of training and use the same values during training.
We provide the analysis of α selection in Section IV-D.

B. Periodic Rehashing

Protocol. The periodic rehashing is designed to refresh the
sign hash functions and the index hash function per round
with low computation overhead. In each round, the server and
clients execute the following steps.
• Server generation. When sending the latest global model

(or aggregated QSRHT Sketch) to clients, the server in-
dependently and uniformly at random samples the hash
functions D and R. For each message sent to participat-
ing clients that contains the global model (or aggregated
QSRHT Sketch), the server piggybacks D and R.

• Client saving. When each client receives the latest global
model (or aggregated QSRHT Sketch) from the server, it
also receives the latest hash functions D and R. Instead of
directly updating, the client saves D and R.

• Client updating. When each client begins its model train-
ing, it updates QSRHT Sketch with D and R.

Benefits. The server generation can efficiently synchronize
hash functions among clients. The client saving and the
client updating can make periodic rehashing compatible with
two different workflows and ensure the correctness of hash
functions usage (see Section III-C). In the SA-based workflow,
the client saving is followed by the client updating, which

③Aggregate

④Post-processing
(1)QSRHT Decompress
(2)Refine Global Model

Generate (𝑫𝒕$𝟏, 𝑹𝒕$𝟏)

Client Server

Save (𝑫𝒕$𝟏, 𝑹𝒕$𝟏)

Update (𝑫𝒕$𝟏, 𝑹𝒕$𝟏)

Global model

③Aggregate

Round t+1

②QSRHT Compress

①Model Training

Round t
QSRHT
Sketch

QSRHT
Sketch

②QSRHT Compress

①Model Training

FedSSA
Operations

(𝑫𝒕$𝟏, 𝑹𝒕$𝟏)

…

Periodic Rehashing
Operations

(a) SA-based example

③Aggregate

④Post-processing
(1)QSRHT Decompress
(2)Refine Global Model

Generate (𝑫𝒕$𝟏, 𝑹𝒕$𝟏)

Client Server

Save (𝑫𝒕$𝟏, 𝑹𝒕$𝟏)

Update (𝑫𝒕$𝟏, 𝑹𝒕$𝟏)

Aggregated
Sketch

③Aggregate

Round t+1

②QSRHT Compress

①Model Training
Round t
QSRHT
Sketch

QSRHT
Sketch

②QSRHT Compress

①Model Training

(𝑫𝒕$𝟏, 𝑹𝒕$𝟏)

…

(b) AHE-based example
Figure 4: Workflow of periodic rehashing. Encryption and decryption
are omitted for simplicity.

is equivalent to an immediate update. However, in the AHE-
based workflow, the client should decompress the aggregated
QSRHT Sketch with old hash functions. If the client updates
hash functions immediately, the corresponding decompression
operation would use the new hash functions and result in
wrong model updates.
Workflows. Let Dt and Rt denote the sign hash function and
index hash function at round t. We show the SA-based and
AHE-based workflow of periodic rehashing.
• SA-based workflow. Figure 4(a) illustrates the SA-based

workflow. In round t, the client trains the model, com-
presses the updates, and sends them to the server. The
server aggregates the QSRHT Sketch and decompresses the
updates to refine the global model. Note that in round t,
both sides use hash functions (Dt, Rt) for compression and
decompression. In round t+1, the server sends the updated
global model and new hash functions (Dt+1, Rt+1) to the
client. Then the client executes the client saving and the
client updating to update new hash functions.

• AHE-based workflow. Figure 4(b) shows the AHE-based
workflow. In round t, the client sends its QSRHT Sketch to

the server. The server aggregates and sends the aggregated
results along with new hash functions (Dt+1, Rt+1) to
each client. The client saves the new hash functions, and
decompresses the updates using the old hash functions to
refine the global model. At the start of round t + 1, the
client updates its hash functions before local training.

Discussion. While periodic rehashing samples new hash func-
tions on the server side, it does not compromise clients’
privacy for two reasons. First, in an honest-but-curious setting,
the server is assumed to generate the hash functions correctly
rather than deliberately creating incorrect ones to manipulate
the system maliciously. Second, FEDSSA’s privacy protection
does not rely solely on the randomness of the hash functions.
Instead, it mainly employs additive cryptographic methods that
provide strong privacy guarantees. This ensures that even with
periodic rehashing, the clients’ privacy remains intact.

C. Analysis of QSRHT Sketch

We provide the theoretical guarantees of QSRHT Sketch,
including unbiasedness, additivity and bounded variance prop-
erty. For a model update vector g ∈ Rd and a given scaling
factor α, we denote the estimation of g as Cα(g).
Theoretical guarantees. Theorem 1 provides the unbiased-
ness of QSRHT Sketch with periodic rehashing. Theorem 2
provides the additivity guarantee of QSRHT Sketch, which en-
ables the aggregation operation of QSRHT Sketch. Theorem 3
offers a guarantee on the variance of model update estimations
for QSRHT Sketch. In the interest of space, we put the proofs
of Theorem 1–Theorem 3 into our technical report [49].
Theorem 1. Given α ∈ R and g ∈ Rd, QSRHT Sketch is an
unbiased estimator of g, i.e. E[Cα(g)] = g. The expectation
is over the sign hash function and the index hash function.
Theorem 2. Given α ∈ R, for any g1,g2 ∈ Rd, QSRHT
Sketch satisfies E[Cα(g1 + g2)] = E[Cα(g1) + Cα(g2)].
Theorem 3. Given quantization scaling factor α ∈ R, ∀g ∈
Rd, we have E[∥Cα(g)− g∥22] =

(d+m−1)d
4mα2 + d−1

m ∥g∥22.
The necessity of periodic rehashing. Theorem 1 relies on the
randomness of hash functions to guarantee the unbiasedness
of QSRHT Sketch. However, if the same hash functions are
used throughout the training procedure, the unbiasedness of
QSRHT Sketch no longer holds.
Variance analysis of QSRHT Sketch. Theorem 3 establishes
a theoretical bound for the variance of the model update
estimation. The term d−1

m ||g||22 can be viewed as the sampling
variance. The coefficient of the sampling variance d−1

m ≈ d
m

represents the compression ratio of QSRHT Sketch, which
captures the trade-off between compression ratio and variance.

D. Convergence Analysis of FEDSSA

Notations. We first introduce some notations. The FL op-
timization problem involves N clients to learn the model
parameter (denoted by w) collaboratively. The federated opti-
mization problem is defined as minw F (w) = 1

N

∑N
i=1 Fi(w),

where Fi(w) denotes the local loss functions of the i-th client.
In each round, FEDSSA server randomly selects K clients
without replacement and each client performs E iterations for

local training. In each round t, we denote the current model
parameter by wt, the learning rate by ηt, and the j-th iteration
gradient of the client i by gu

t,v .
Assumptions. We make the following assumptions which
are standard in FL convergence analysis [50]. Specifically,
Assumption 1 assumes Lipschitz continuous gradients on loss
functions. Assumption 2 and 3 assume the stochastic gradient
of each client to be unbiased and bounded.
Assumption 1. There is a constant L > 0, such that
∥∇Fi(u)−∇Fi(v)∥ ≤ L∥u−v∥, ∀u,v ∈ Rd, ∀1 ≤ i ≤ N .
Assumption 2. E

[
gu
t,v

]
= ∇Fi(wt), ∀1 ≤ i ≤ N.

Assumption 3. There exist two constants σL > 0, σG > 0,
such that E

[
∥gu

t,v −∇Fi(wt)∥2
]
≤ σ2

L, ∀1 ≤ i ≤ N. and
∥∇Fi(wt)−∇F (wt)∥2 ≤ σ2

G, ∀1 ≤ i ≤ N, ∀1 ≤ t ≤ T.
Convergence analysis. When assuming that all clients par-
ticipate in each round (i.e. N = K), the following theorem
provides a convergence bound for FEDSSA. We leave the
proof of the Theorem 4 to our technical report [49].
Theorem 4. Suppose η is a constant and η ≤
min

(
1

8EL ,
1

EL(1+ d−1
m)

)
. When using a constant learning

rate ηt = η for each round, the following bound holds for
FEDSSA:

min
1≤t≤T

{E∥∇F (wt)∥2} ≤ F (w0)− F (w∗)

cηET
+M, (1)

where F (w∗) := minw{F (w)},

M :=
1

c

[
Lη

E
c2 +

Lη

2K

(
1 +

d− 1

m

)
σ2
L +

5Eη2L2

2
c3

]
,

where c is a constant, c2 := d(1+r)
4Kα2 and c3 := σ2

L + 6Eσ2
G.

Quantization scale selection. The term d(1+r)
4Kα2 in equation (1)

can be interpreted as the quantization error of QSRHT Sketch.
Theorem 4 suggests that by carefully selecting the quantization
scaling factor, the quantization step in QSRHT Sketch has a
minimal impact on the final model accuracy. In the probabilis-
tic quantization step, QSRHT Sketch chooses a quantization

scale factor such that α ≥
(√

d×r
K

)
.

V. EVALUATION

A. Experiment Settings

Implementation details. To implement the FEDSSA proto-
type, we first develop a single-machine simulator in Python
(∼300 LoC) to simulate the training procedure. Then we
develop the FEDSSA server module (∼1,600 LoC) and the
FEDSSA client module (∼160 LoC) on top of the simulator
with Python. We also develop QSRHT Sketch with PyTorch on
GPU (∼180 LoC). For AHE, we adopt the Paillier’s scheme
[15]. We use Intel’s Paillier Cryptosystem Library [51] to
implement the encryption and decryption procedure.
Datasets, models, and data allocation. We conduct image
classification tasks (CV tasks) on CIFAR-10 and CIFAR-
100, and a next-character prediction task (NLP task) on the
Shakespeare dataset [4], [52]. The models and data allocation
details are summarized in Table III.

Table III: Datasets, Models, and Data Allocation Summary.

Dataset Model Parameters Data Allocation
CIFAR-10 ResNet9 [32] 6.5M Dirichlet
CIFAR-100 ResNet18 [33] 11M Dirichlet
Shakespeare LSTM [53] 4M real-world non-i.i.d.

For both CV tasks, we simulate non-independent and identi-
cally distributed (non-i.i.d.) data distributions among N clients
using the Dirichlet distribution Dir(β = 0.1, 0.3, 0.5), where
smaller β values represent higher non-i.i.d. levels. For the NLP
task, we use a subset that contains 143 clients as suggested
in [52]. In both ResNet models, batch norm [54] is replaced
with group norm [55] as suggested in [56].
Metrics. We use the following two metrics for evaluation,
namely the test accuracy and average computation time. The
test accuracy is the percentage of correctly classified samples
in the test dataset. The average computation time represents the
average time spent on computation by the client throughout the
procedure. We use the average computation time to evaluate
the computation overhead when AHE is in use [16] (Exp#7).
FL settings. We evaluate FEDSSA under two federated
learning settings, namely SA setting and AHE setting. We
summarize the hyperparameters in Table IV.

Table IV: Hyperparameter Summary for FL Settings.

Settings SA setting AHE setting
Rounds (T) 1000 100
Clients (N) 100 (143 for Shakespeare) 10
Clients per round (K) 12 (10 for Shakespeare) 10
Learning rate (η) 0.1 0.01

For the SA setting, we adopt a cosine annealing learning
rate scheduler to stabilize the training procedure. For the AHE
setting, we set the key size of Paillier encryption to 2048 bits.
We use the following hyperparameters for both settings. Each
client performs E = 3 epochs of local updates with a batch
size of B = 64 using the SGD optimizer, which is consistent
with [4]. For FEDSSA, we use α = 106 by default.
Baseline algorithms. We evaluate the test accuracy of
FEDSSA with 7 baseline algorithms from three categories:
• SA-based compressor. We compare FEDSSA with 2

SA-based compression methods, namely KVSAgg-Minmax
(KVS-MM) and KVSAgg-GSpar (KVS-GS) [29]. As they
support a large compression ratio, we vary the compression
ratio r from 20 to 160 with a step size of 20, and we refer to
them as large compression ratios. To ensure correct decom-
pression under compression ratio r, we configure KVS-MM
and KVS-GS with specific parameters W = d

11.25×K×r and
m = d

9×r as suggested in [29].
• AHE-based compressor. We compare FEDSSA with 1

AHE-based algorithm, namely BatchCrypt (BC) [16]. BC
is a quantization-based method and only supports a small
compression ratio (i.e., 2 and 4). We set r = 2, 4 for their
comparison and refer to them as small compression ratios,
while we also validate the test accuracy of FEDSSA under
large compression ratios.

• Non privacy-preserving compressor. To show that
FEDSSA can retain test accuracy under large compression

2 4 6 8 10 12 14 16
Compression Ratio (x10)

0
20
40
60
80

100

Te
st

 A
cc

ur
ac

y
(%

) Raw FedSSA KVS-GS KVS-MM

2 4 6 8 10 12 14 16
Compression Ratio (×10)

0
20
40
6060
80

100

Te
st

 A
cc

ur
ac

y
(%

)

2 4 6 8 10 12 14 16
Compression Ratio (×10)

0
20
40
60
80

100

Te
st

 A
cc

ur
ac

y
(%

)

(a) CIFAR-10 (β = 0.5) (b) CIFAR-100 (β = 0.5)

2 4 6 8 10 12 14 16
Compression Ratio (×10)

0
20
40
6060
80

100

Te
st

 A
cc

ur
ac

y
(%

)

2 4 6 8 10 12 14 16
Compression Ratio (×10)

0
20
40
60
80

100

Te
st

 A
cc

ur
ac

y
(%

)

(c) CIFAR-10 (β = 0.3) (d) CIFAR-100 (β = 0.3)

2 4 6 8 10 12 14 16
Compression Ratio (×10)

0
20
40
60
80

100

Te
st

 A
cc

ur
ac

y
(%

)

2 4 6 8 10 12 14 16
Compression Ratio (×10)

0
20
40
60
80

100

Te
st

 A
cc

ur
ac

y
(%

)

(e) CIFAR-10 (β = 0.1) (f) CIFAR-100 (β = 0.1)
Figure 5: (Exp#1) Accuracy comparison in the SA setting.

2 4 6 8
Compression Ratio (×10)

0
10
20
30
40
50
60

Te
st

 A
cc

ur
ac

y
(%

) FedSSA Raw KVS-GS KVS-MM

Figure 6: (Exp#1) Accuracy
comparison on Shakespeare.

2 4 6 8
Compression Ratio (×10)

0
10
20
30
40
50
60

Te
st

 A
cc

ur
ac

y
(%

) FedSSA GS MM FSGD RK

Figure 7: (Exp#3) Accuracy
comparision on Shakespeare.

ratios, we further compare FEDSSA with 4 baseline gradient
compression methods without privacy protection in the
SA setting. We choose 3 sparsification methods, namely
Minmax sampling (MM) [30], GSpar sampling (GS) [31]
and random-k sampling (RK) [57] with shared randomness
(i.e., choosing the same elements among clients). We also
compare FEDSSA against FetchSGD (FSGD) [22], which
is the state-of-the-art sketch-based method in FL.

B. Experiment Results

(Exp#1) Accuracy comparison in the SA setting. We
compare the test accuracy of FEDSSA with KVS-MM and
KVS-GS under the SA setting on 7 tasks: CIFAR-10 (β =
0.5, 0.3, 0.1), CIFAR-100 (β = 0.5, 0.3, 0.1), and Shake-
speare. We also evaluate tasks without compression (Raw).

Figures 5 and 6 show that FEDSSA outperforms KVS-
MM and KVS-GS across all tasks, with improvements up to
34.25% for the CV tasks and up to 56% for the NLP task.
Notably, KVS-MM and KVS-GS fail to converge at r = 20
in the NLP task, whereas FEDSSA maintains stability across
varying compression ratios. Moreover, FEDSSA achieves test
accuracies close to those of the corresponding tasks without
compression. For instance, as shown in Figures 5(a), 5(c),
and 5(e), FEDSSA achieves 88.24%, 86.24%, and 72.56%
accuracy on CIFAR-10 tasks at r = 20, compared to
89.05%, 86.97%, and 67.17% without compression. Even as

Cifa
r10

(0.
5)

Cifa
r10

(0.
3)

Cifa
r10

(0.
1)

Cifa
r10

0(0
.5)

Cifa
r10

0(0
.3)

Cifa
r10

0(0
.1)

0
20
40
60
80

100
Te

st
 A

cc
ur

ac
y

(%
) FedSSA BC

CIFA
R-1

0(0
.5)

CIFA
R-1

0(0
.3)

CIFA
R-1

0(0
.1)

CIFA
R-1

00
(0.

5)

CIFA
R-1

00
(0.

3)

CIFA
R-1

00
(0.

1)
0

20
40
60
80

100
Te

st
 A

cc
ur

ac
y

(%
)

CIFA
R-1

0(0
.5)

CIFA
R-1

0(0
.3)

CIFA
R-1

0(0
.1)

CIFA
R-1

00
(0.

5)

CIFA
R-1

00
(0.

3)

CIFA
R-1

00
(0.

1)
0

20
40
60
80

100

Te
st

 A
cc

ur
ac

y
(%

)

(a) Compression Ratio = 2 (b) Compression Ratio = 4

2 4 6 8 10 12 14 16
Compression Ratio (x10)

0
20
40
60
80

100

Te
st

 A
cc

ur
ac

y
(%

) β=0.5 β=0.3 β=0.1

2 4 6 8 10 12 14 16
Compression Ratio (x10)

0
20
40
60
80

100
Te

st
 A

cc
ur

ac
y

(%
) β=0.5 β=0.3 β=0.1

(c) CIFAR-10 (β) (d) CIFAR-100 (β)
Figure 8: (Exp#2) Accuracy comparison in the AHE setting.

20 40 60 80 100 120 140 160
Compression Ratio

84
85
86
87
88
89

Te
st

 A
cc

ur
ac

y
(%

)

FedSSA GS MM FSGD RK

2 4 6 8 10 12 14 16
Compression Ratio (×10)

0
20
40
60
80

100

Te
st

 A
cc

ur
ac

y
(%

)

2 4 6 8 10 12 14 16
Compression Ratio (×10)

0
20
40
60
80

100

Te
st

 A
cc

ur
ac

y
(%

)

(a) CIFAR-10 (0.5) (b) CIFAR-100 (0.5)
Figure 9: (Exp#3) Accuracy comparison with non-privacy compres-
sors.

the compression ratio increases to r = 160, FEDSSA only
experiences minor accuracy reductions of 3.10%, 4.50%, and
4.91%, respectively. In contrast, KVS-MM and KVS-GS suffer
significant degradations of over 17.76% when r = 160.
(Exp#2) Accuracy comparison in the AHE setting. We first
compare the test accuracy of FEDSSA with BC under the
AHE setting on CIFAR-10 (β = 0.5, 0.3, 0.1) and CIFAR-100
(β = 0.5, 0.3, 0.1). Figures 8(a) and 8(b) show the accuracy for
compression ratios r = 2 and r = 4, respectively. The results
indicate that FEDSSA achieves a comparable test accuracy
to BC under the same compression ratio. Specifically, the
differences between FEDSSA and BC are within 1.86% and
1.33% across different datasets for r = 2, 4, respectively.

We next validate the test accuracy of FEDSSA for large
compression ratios under the AHE setting. Figures 8(c) and
8(d) show that when r varies from 20 to 160, FEDSSA
achieves a stable model accuracy with no more than 4.19%
and 3.8% of accuracy drop on CIFAR-10 and CIFAR-100,
respectively. Also, we compare the test accuracy of FEDSSA
with r = 20 to that of BC with r = 4. For CIFAR-10, the test
accuracy of FEDSSA is lower than that of BC within 2.2%,
while for CIFAR-100, the test accuracy of FEDSSA is higher
than that of BC by up to 2.76%.
(Exp#3) Accuracy comparison with non-privacy compres-
sors. We evaluate the test accuracy of FEDSSA and 4 baseline
compressors without privacy protection. We evaluate Shake-
speare, CIFAR-10 (0.5), and CIFAR-100 (0.5).

103 104 105 106 107

Quantization Scale

0
20
40
60
80

100

Te
st

 A
cc

ur
ac

y
(%

) r=20 r=100 r=200

Figure 10: (Exp#4)
Impact of α.

2 4 6 8 10 12 14 16
Compression Ratio (×10)

0
20
40
60
80

100

Te
st

 A
cc

ur
ac

y
(%

) FedSSA FedSSA w/o PR

Figure 11: (Exp#5) Effect of
periodic rehashing.

Figure 7 and Figure 9 show the results on the NLP task
and the CV tasks, respectively. It shows that FEDSSA achieves
comparable test accuracy compared to baselines on these train-
ing tasks. For the Shakespeare task, as shown in Figure 7, MM,
GS, and FEDSSA maintain stable test accuracies ranging from
57.23% to 53.12%. In contrast, the test accuracy of FSGD
and RK quickly drops to 0% (due to Nan) and 22.89% when
r = 80. For the CIFAR-10 (β = 0.5) task, MM, GS, FSGD,
RK, and FEDSSA achieve test accuracies of 88.7%, 88.53%,
78.35%, 81.31%, and 88.24%, respectively for r = 20. As
the compression ratio increases, the test accuracy decreases
by 2.6%, 2.7%, 47.42%, and 3.10% for MM, GS, FSGD, and
FEDSSA, respectively. Meanwhile, the test accuracy of RK
rapidly decreases to 1% when r = 60. For the CIFAR-100
(β = 0.5) task, MM, GS, and FEDSSA maintain stable test
accuracies ranging from 59.69% to 55.86%. In contrast, the
test accuracy of FSGD and RK achieves only 42.82% and
51.33% when r = 20 and quickly drops to 12.15% and 1%
when r = 120. Compared to FS, FEDSSA retains higher
model accuracy due to its unbiasedness. Similarly, FEDSSA
outperforms RK because of the bounded-error guarantee.
(Exp#4) Impact of quantization scaling factor. We evaluate
the test accuracy by varying the quantization scaling factor
(i.e., α) on the CIFAR-10 (0.5) training task. We consider
three different compression ratios: r = 20, 100, 200. For each
compression ratio group, we vary α and analyze its impact
on the test accuracy of FEDSSA. We also evaluate the final
test accuracy of FEDSSA without the quantization step to
understand the overall impact of quantization.

Figure 10 shows that for the CIFAR-10 (0.5) task, when
α = 103, the test accuracy of FEDSSA with quantization
drops to 67.71%, 63.97%, and 49.53%, respectively. How-
ever, when setting α ≥ 104, the test accuracy of FEDSSA
without quantization reaches 87.96%, 86.41%, and 84.60% for
r = 20, 100, 200, respectively. When using an even larger α
(e.g., 105, 106, and 107), the differences in the test accuracy
are insignificant, i.e., within 0.4%.
(Exp#5) Effect of periodic rehashing. We evaluate the impact
of periodic rehashing on CIFAR-10 (0.5) under the SA setting.
We evaluate the test accuracy of FEDSSA and FEDSSA
without periodic rehashing (FEDSSA w/o PR).

Figure 11 shows that the test accuracy of FEDSSA con-
sistently outperforms FEDSSA w/o PR. The test accuracy
of FEDSSA varies only from 88.24% to 85.08%, with a
decrease of 3.16%. In contrast, FEDSSA w/o PR exhibits a
significant accuracy drop, ranging from 86.01% to 61.89%,
with a decrease of over 24%.

246810121416
Compression Ratio (x10)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Ti
m

e
(s

)
Training Hashing Compression Encryption

2 4 6 8 10 12 14 16
Compression Ratio (×10)

0

20

40

60

80

100

Ti
m

e
(%

)

Figure 12: (Exp#6) FEDSSA overhead.

2 4
Compression Ratio

0
20
40
60
80

100
120

Ti
m

e
pe

r R
ou

nd
(s

) FedSSA BC

20 40 60 80 100 120 140 160
Compression Ratio

0
20
40
60
80

100
120

Ti
m

e
pe

r R
ou

nd
 (s

) FedSSA (x2) FedSSA (x4) FedSSA

(a) CIFAR-10 (0.5) (b) CIFAR-10 (0.5)

2 4
Compression Ratio

0
50

100
150
200

Ti
m

e
pe

r R
ou

nd
(s

) FedSSA BC

20 40 60 80 100 120 140 160
Compression Ratio

0
50

100
150
200

Ti
m

e
pe

r R
ou

nd
 (s

) FedSSA (x2) FedSSA (x4) FedSSA

(c) CIFAR-100 (0.5) (d) CIFAR-100 (0.5)
Figure 13: (Exp#7) AHE computational overhead reduction.

(Exp#6) FEDSSA overhead. In the SA setting, we analyze
the percentage of local training (Training), compression with
QSRHT Sketch, and encryption (Encryption) with SA. We
break down the computation time of compression into hash
function calculation (Hashing) and other operations except for
hash calculation (Compression).

Figure 12 shows that the computation overhead of com-
pression (not shown in the figure) and encryption are small
across different r. The hash calculation overhead is small
compared to local training, which is acceptable. The majority
of computation time is consumed by local training and hash
calculation, which takes up around 85% and around 14.8%,
respectively.
(Exp#7) AHE computational overhead reduction. We com-
pare the average computation time of FEDSSA and BC at
compression ratios of r = 2 and r = 4. We focusing
on CIFAR-10 (0.5) and CIFAR-100 (0.5). We also evaluate
FEDSSA’s performance under larger compression ratios.

Figures 13(a) and 13(c) show that FEDSSA consistently
outperforms BC in terms of computation time at smaller
compression ratios. Specifically, at r = 4, FEDSSA reduces
the average computation time by 17.9% on CIFAR-10 and
18.49% on CIFAR-100 compared to BC. Moreover, Figures
13(b) and 13(d) highlight the trade-off between computation
overhead reduction and model accuracy as the compression
ratio increases. Higher compression ratios yield further reduc-
tions in computation time, but at the cost of accuracy. For
example, at r = 20, FEDSSA reduces computation time by
56.71% on CIFAR-10 and 58.15% on CIFAR-100 compared
to BC with r = 4, with only a 2.2% accuracy drop. This

remains within acceptable limits (see Exp#2).

VI. RELATED WORK

Gradient quantization. These methods reduce the gradient
size by reducing the precision of each gradient element [16],
[25], [44], [58], [59]. However, these quantization methods are
originally designed for model updates and may not be suitable
for the quantization procedure of the sketch. In contrast, the
quantization step of QSRHT Sketch can provide a bounded-
error guarantee while maintaining the additivity of sketch.
Sketch-based gradient compression. Existing sketch-based
compression methods mainly focus on two aspects: (i) as-
sisting quantization or sparsification with sketch [22], [41],
[60]; (ii) addressing the computation overhead of sketch in
distributed machine learning [42]. Unfortunately, these meth-
ods inherit the limitations of gradient quantization or gradient
sparsification, which is addressed by FEDSSA. The most simi-
lar work to ours is SQuaFL [61], which combines quantization
with Count Sketch for compression [47]. However, FEDSSA
addresses the following issues that SQuaFL does not consider:
(i) adopts QSRHT Sketch with provable quantization scale
factor which satisfies additivity (instead of lacking additivity);
(ii) providing a bounded-error guarantee (instead of potential
numerical overflow in the sketch compression procedure).
Differential privacy. Differential privacy (DP) protects
client’s model updates by introducing additional noise [62]–
[64]. Some studies further codesign gradient compression with
specific DP mechanisms [37], [65]–[68]. While these studies
focus on alleviating the communication overhead of DP-based
methods, FEDSSA primarily supports additivity cryptographic
methods, which do not compromise model accuracy for pri-
vacy protection [10], [16], [40], [69].

VII. CONCLUSION

In this paper, we propose FEDSSA, a compression frame-
work that can reduce the overhead of additive cryptographic
methods in FL while retaining model accuracy. FEDSSA
propose QSRHT Sketch to reduce the overhead of these
methods with a large compression ratio. FEDSSA also pro-
poses periodic rehashing to correctly fresh the hash functions.
Our evaluation shows that FEDSSA can achieve comparable
results to state-of-the-art SA-based compressors and AHE-
based compressor under the same compression ratio. Further-
more, compared to state-of-the-art AHE-based compressors,
FEDSSA decreases the computation time per round by up to
58.15% with an accuracy loss within 2.2%.

ACKNOWLEDGEMENTS

We thank our shepherd, Baochun Li, and the anonymous
reviewers for their valuable comments. This work is supported
by National Key Research and Development Program of China
(2023YFB2904600), National Natural Science Foundation of
China (62172007), and Research Grants Council of Hong
Kong (GRF 14201523). Qun Huang is the corresponding
author.

REFERENCES

[1] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augen-
stein, H. Eichner, C. Kiddon, and D. Ramage, “Federated learning for
mobile keyboard prediction,” arXiv preprint arXiv:1811.03604, 2018.

[2] J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, and F. Wang,
“Federated learning for healthcare informatics,” Journal of Healthcare
Informatics Research, vol. 5, pp. 1–19, 2021.

[3] G. Long, Y. Tan, J. Jiang, and C. Zhang, “Federated learning for open
banking,” in Federated Learning: Privacy and Incentive. Springer,
2020, pp. 240–254.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. of AISTAT. PMLR, 2017, pp. 1273–1282.

[5] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” arXiv
preprint arXiv:1906.08935, 2019.

[6] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting
gradients-how easy is it to break privacy in federated learning?” Proc.
of NeurIPS, vol. 33, pp. 16 937–16 947, 2020.

[7] Y. Huang, S. Gupta, Z. Song, K. Li, and S. Arora, “Evaluating gradient
inversion attacks and defenses in federated learning,” Proc. of NeurIPS,
vol. 34, pp. 7232–7241, 2021.

[8] D. I. Dimitrov, M. Balunović, N. Konstantinov, and M. Vechev, “Data
leakage in federated averaging,” arXiv preprint arXiv:2206.12395, 2022.

[9] X. Yin, Y. Zhu, and J. Hu, “A comprehensive survey of privacy-
preserving federated learning: A taxonomy, review, and future direc-
tions,” ACM Computing Surveys (CSUR), vol. 54, no. 6, pp. 1–36, 2021.

[10] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in Proc. of ACM CCS, 2017,
pp. 1175–1191.

[11] Y. Aono, T. Hayashi, L. Wang, S. Moriai et al., “Privacy-preserving
deep learning via additively homomorphic encryption,” IEEE Trans. on
Information Forensics and Security, vol. 13, no. 5, pp. 1333–1345, 2017.

[12] M. Rathee, C. Shen, S. Wagh, and R. A. Popa, “Elsa: Secure aggregation
for federated learning with malicious actors,” in Proc. of IEEE S&P.
IEEE, 2023, pp. 1961–1979.

[13] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova,
“Secure single-server aggregation with (poly) logarithmic overhead,” in
Proc. of ACM CCS, 2020, pp. 1253–1269.

[14] J. So, C. He, C.-S. Yang, S. Li, Q. Yu, R. E Ali, B. Guler, and
S. Avestimehr, “Lightsecagg: a lightweight and versatile design for
secure aggregation in federated learning,” Proc. of MLSys, vol. 4, pp.
694–720, 2022.

[15] P. Paillier, “Public-key cryptosystems based on composite degree residu-
osity classes,” in International conference on the theory and applications
of cryptographic techniques. Springer, 1999, pp. 223–238.

[16] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “Batchcrypt:
Efficient homomorphic encryption for cross-silo federated learning,” in
Proc. of USENIX ATC, 2020, pp. 493–506.

[17] K. Bonawitz, F. Salehi, J. Konečnỳ, B. McMahan, and M. Gruteser,
“Federated learning with autotuned communication-efficient secure ag-
gregation,” in 2019 53rd Asilomar Conference on Signals, Systems, and
Computers. IEEE, 2019, pp. 1222–1226.

[18] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
dnns,” in Proc. of INTERSPEECH, vol. 2014, 2014, pp. 1058–1062.

[19] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” arXiv preprint arXiv:1712.01887, 2017.

[20] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
Proc. of NeurIPS, vol. 30, pp. 1508–1518, 2017.

[21] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani,
“Fedpaq: A communication-efficient federated learning method with
periodic averaging and quantization,” in Proc. of AISTAT. PMLR, 2020,
pp. 2021–2031.

[22] D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman,
J. Gonzalez, and R. Arora, “Fetchsgd: Communication-efficient feder-
ated learning with sketching,” in Proc. of ICML. PMLR, 2020, pp.
8253–8265.

[23] S. Agarwal, H. Wang, S. Venkataraman, and D. Papailiopoulos, “On the
utility of gradient compression in distributed training systems,” Proc. of
MLSys, vol. 4, pp. 652–672, 2022.

[24] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” arXiv preprint arXiv:1704.05021, 2017.

[25] M. Li, R. B. Basat, S. Vargaftik, C. Lao, K. Xu, X. Tang, M. Mitzen-
macher, and M. Yu, “Thc: Accelerating distributed deep learning using
tensor homomorphic compression,” arXiv preprint arXiv:2302.08545,
2023.

[26] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi, “Error feedback
fixes signsgd and other gradient compression schemes,” in International
Conference on Machine Learning. PMLR, 2019, pp. 3252–3261.

[27] Y. Lu, P. S. Dhillon, D. Foster, and L. Ungar, “Faster ridge regression via
the subsampled randomized hadamard transform,” in Proc. of NeurIPS,
2013, pp. 369–377.

[28] J. Lacotte, S. Liu, E. Dobriban, and M. Pilanci, “Optimal iterative
sketching with the subsampled randomized hadamard transform,” in
Proc. of NeurIPS, 2020, pp. 9725–9735.

[29] Y. Wu, S. Dong, Y. Zhou, Y. Zhao, F. Fu, T. Yang, C. Niu, F. Wu, and
B. Cui, “Kvsagg: Secure aggregation of distributed key-value sets,” in
Proc. of IEEE ICDE. IEEE, 2023, pp. 1775–1789.

[30] Y. Zhao, Y. Zhang, Y. Li, Y. Zhou, C. Chen, T. Yang, and B. Cui,
“Minmax sampling: A near-optimal global summary for aggregation in
the wide area,” in Proc. of ACM SIGMOD, 2022, pp. 744–758.

[31] S. Wang, “A practical guide to randomized matrix computations with
matlab implementations,” arXiv preprint arXiv:1505.07570, 2015.

[32] D. Page. (2019) How to train your resnet. [Online]. Available:
https://myrtle.ai/how-to-train-your-resnet/

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[34] D. Huba, J. Nguyen, K. Malik, R. Zhu, M. Rabbat, A. Yousefpour, C.-J.
Wu, H. Zhan, P. Ustinov, H. Srinivas et al., “Papaya: Practical, private,
and scalable federated learning,” Proc. of MLSys, vol. 4, pp. 814–832,
2022.

[35] Z. Jiang, W. Wang, and R. Chen, “Taming client dropout for dis-
tributed differential privacy in federated learning,” arXiv preprint
arXiv:2209.12528, 2022.

[36] J. Zhang, X. Cheng, W. Wang, L. Yang, J. Hu, and K. Chen, “{FLASH}:
Towards a high-performance hardware acceleration architecture for
cross-silo federated learning,” in 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), 2023, pp. 1057–1079.

[37] W.-N. Chen, C. A. C. Choo, P. Kairouz, and A. T. Suresh, “The fun-
damental price of secure aggregation in differentially private federated
learning,” in International Conference on Machine Learning. PMLR,
2022, pp. 3056–3089.

[38] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Advances in Cryptology–
ASIACRYPT 2017: 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I 23. Springer, 2017, pp. 409–
437.

[39] W. Jin, Y. Yao, S. Han, C. Joe-Wong, S. Ravi, S. Avestimehr, and
C. He, “Fedml-he: An efficient homomorphic-encryption-based privacy-
preserving federated learning system,” arXiv preprint arXiv:2303.10837,
2023.

[40] Z. Zeng, Y. Du, Z. Fang, L. Chen, S. Pu, G. Chen, H. Wang, and
Y. Gao, “Flbooster: A unified and efficient platform for federated
learning acceleration,” in 2023 IEEE 39th International Conference on
Data Engineering (ICDE). IEEE, 2023, pp. 3140–3153.

[41] N. Ivkin, D. Rothchild, E. Ullah, V. Braverman, I. Stoica, and R. Arora,
“Communication-efficient distributed sgd with sketching,” in Proc. of
NeurIPS, 2019, pp. 13 142–13 152.

[42] J. Gui, Y. Song, Z. Wang, C. He, and Q. Huang, “Sk-gradient: Efficient
communication for distributed machine learning with data sketch,” in
Proc. of IEEE ICDE. IEEE, 2023, pp. 2372–2385.

[43] L. Zhang, L. Zhang, S. Shi, X. Chu, and B. Li, “Evaluation and
optimization of gradient compression for distributed deep learning,”
arXiv preprint arXiv:2306.08881, 2023.

[44] K. Mishchenko, B. Wang, D. Kovalev, and P. Richtárik, “Intsgd:
Adaptive floatless compression of stochastic gradients,” arXiv preprint
arXiv:2102.08374, 2021.

[45] S. Vargaftik, R. Ben-Basat, A. Portnoy, G. Mendelson, Y. Ben-Itzhak,
and M. Mitzenmacher, “Drive: One-bit distributed mean estimation,”
Advances in Neural Information Processing Systems, vol. 34, pp. 362–
377, 2021.

[46] A. Beznosikov, S. Horváth, P. Richtárik, and M. Safaryan, “On biased
compression for distributed learning,” Journal of Machine Learning
Research, vol. 24, no. 276, pp. 1–50, 2023.

[47] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in Proc. of ICALP. Springer, 2002, pp. 693–703.

[48] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[49] (2024) Technical report of fedssa. [Online]. Available: https://github.
com/fedssa/FedSSA-Technical-Report

[50] H. Yang, M. Fang, and J. Liu, “Achieving linear speedup with par-
tial worker participation in non-iid federated learning,” arXiv preprint
arXiv:2101.11203, 2021.

[51] (2024) Python bindings and wrapper for intel paillier cryptosystem
library. [Online]. Available: https://github.com/intel/pailliercryptolib
python

[52] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan,
V. Smith, and A. Talwalkar, “Leaf: A benchmark for federated settings,”
arXiv preprint arXiv:1812.01097, 2018.

[53] J. Schmidhuber, S. Hochreiter et al., “Long short-term memory,” Neural
Comput, vol. 9, no. 8, pp. 1735–1780, 1997.

[54] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep net-
work training by reducing internal covariate shift,” in Proc. of ICML,
2015, pp. 448–456.

[55] Y. Wu and K. He, “Group normalization,” in Proc. of ECCV, 2018, pp.
3–19.

[56] K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons, “The non-iid data
quagmire of decentralized machine learning,” in Proc. of ICML. PMLR,
2020, pp. 4387–4398.

[57] S. Shi, X. Chu, K. C. Cheung, and S. See, “Understanding top-k sparsi-
fication in distributed deep learning,” arXiv preprint arXiv:1911.08772,
2019.

[58] A. T. Suresh, X. Y. Felix, S. Kumar, and H. B. McMahan, “Distributed
mean estimation with limited communication,” in Proc. of ICML.
PMLR, 2017, pp. 3329–3337.

[59] J. Xin, M. Canini, P. Richtárik, and S. Horváth, “Global-qsgd: Practical
floatless quantization for distributed learning with theoretical guaran-
tees,” arXiv preprint arXiv:2305.18627, 2023.

[60] J. Jiang, F. Fu, T. Yang, and B. Cui, “Sketchml: Accelerating distributed
machine learning with data sketches,” in Proc. of ACM SIGMOD, 2018,
pp. 1269–1284.

[61] P. Prakash, J. Ding, M. Shu, J. Wang, W. Xu, and M. Pan, “Squafl:
Sketch-quantization inspired communication efficient federated learn-
ing,” in 2021 IEEE/ACM Symposium on Edge Computing (SEC). IEEE,
2021, pp. 350–354.

[62] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Tal-
war, and L. Zhang, “Deep learning with differential privacy,” in Proc.
of ACM CCS, 2016, pp. 308–318.

[63] S. Truex, L. Liu, K.-H. Chow, M. E. Gursoy, and W. Wei, “Ldp-fed:
Federated learning with local differential privacy,” in Proceedings of
the Third ACM International Workshop on Edge Systems, Analytics and
Networking, 2020, pp. 61–66.

[64] Y. Zhao, J. Zhao, M. Yang, T. Wang, N. Wang, L. Lyu, D. Niyato,
and K.-Y. Lam, “Local differential privacy-based federated learning for
internet of things,” IEEE Internet of Things Journal, vol. 8, no. 11, pp.
8836–8853, 2020.

[65] T. Li, Z. Liu, V. Sekar, and V. Smith, “Privacy for free: Communication-
efficient learning with differential privacy using sketches,” arXiv preprint
arXiv:1911.00972, 2019.

[66] B. Wang, F. Wu, Y. Long, L. Rimanic, C. Zhang, and B. Li, “Datal-
ens: Scalable privacy preserving training via gradient compression and
aggregation,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021, pp. 2146–2168.

[67] R. Kerkouche, G. Ács, C. Castelluccia, and P. Genevès, “Compression
boosts differentially private federated learning,” in Proc. of IEEE Eu-
roS&P. IEEE, 2021, pp. 304–318.

[68] Y. Youn, Z. Hu, J. Ziani, and J. Abernethy, “Randomized quantization is
all you need for differential privacy in federated learning,” arXiv preprint
arXiv:2306.11913, 2023.

[69] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “{GAZELLE}:
A low latency framework for secure neural network inference,” in 27th
USENIX Security Symposium (USENIX Security 18), 2018, pp. 1651–
1669.

