
Scaling Disk Failure Prediction via Multi-Source Stream Mining

Shujie Han1,2, Zirui Ou2, Qun Huang2, and Patrick P. C. Lee3

1Northwestern Polytechnical University 2Peking University 3The Chinese University of Hong Kong

Abstract—Traditional disk failure prediction approaches strug-
gle to scale with data growth, as they treat data as a whole
collection to obtain the global data view for preprocessing
and training. Existing distributed machine learning and stream
mining systems are designed to scale data processing, particu-
larly for training. However, scaling disk failure prediction faces
challenges in the scalability of preprocessing, including additional
data movements from data collection to training, data inflation
during preprocessing, and multiple-to-multiple data allocation.
To address these challenges, we present SCALEDFP, a general
framework for scaling disk failure prediction via multi-source
stream mining based on three techniques: near-data prepro-
cessing, random downsampling, and training data allocation.
SCALEDFP scales disk failure prediction with the number of data
sources. It achieves significant throughput gains of preprocessing
and training with comparable prediction accuracy against a state-
of-the-art disk failure prediction approach that collects data in
a centralized place.

I. INTRODUCTION

Prevalent disk failures challenge the reliability of modern
data centers. To tolerate disk failures, modern data centers
tend to adopt proactive approaches by predicting imminent
disk failures [9], [27], [48]. Such proactive approaches apply
machine learning (ML) algorithms to identify soon-to-fail
disks and replace them in advance. Conventionally, disk failure
prediction approaches [9], [24], [31], [43], [44], [50] prepro-
cess disk logs to extract numerical values that represent disk
performance and reliability statistics. Utilizing such numerical
values, including the known status of disks (i.e., healthy or
failed) as training data, they train a prediction model and
predict the disk status in the near future (e.g., remaining
healthy or becoming failed).

Conventional disk failure prediction approaches, either of-
fline learning [9], [24], [29], [31], [43], [44], [50] or online
learning [17], [41], are difficult to scale with the data volume.
Offline learning approaches assume the availability of all data
in advance, while online learning approaches regard data as
a continuous data stream with partial availability. By aggre-
gating data into a monitoring system (e.g., distributed storage
systems [12] or time-series databases [37]), both offline and
online learning approaches consider the disk set as a whole
collection. This simplifies the process of obtaining the global
view of data (e.g., global data distribution) to identify failure
patterns for high prediction accuracy. However, attaining a
global view of data needs extensive hardware resources as
more data is used. For example, Azure deploys hundreds of
millions of disks [44], where the status data of each disk
is recorded hourly [29], [44]. Each record is identified with
more than 400 statistical attributes [44]. Given that the status
data is represented as a 64-bit floating-point value, loading all
disk logs in one day to obtain the global view would require

approximately 6.98 TB of RAM. Thus, scaling disk failure
prediction is essential for large-scale disk deployment.

Existing distributed ML systems [6], [22], [34] and dis-
tributed stream processing systems [11], [20], [39], [45] are
adopted for the scalability of data processing, especially in
training. However, scaling disk failure prediction faces several
challenges in the scalability of preprocessing before training.
First, the lack of integration between data collection and
training involves additional data transfers. Most existing dis-
tributed ML and stream processing systems do not incorporate
integrated data collection mechanisms for disk failure predic-
tion, while monitoring systems only provide general-purpose
data analytics without fully integrated ML-based prediction
models [37]. This results in two types of data transfers: (i)
data collection from source locations to a monitoring system
for preparation and (ii) data allocation from the monitoring
system to external ML-based platforms for training. The
second challenge is data inflation in preprocessing. Traditional
disk failure prediction approaches often augment training data
during preprocessing by generating more statistical attributes
[44], [48] and buffering a long period of historical data for
online labeling [17], [41]. Such data inflation incurs larger
network overhead of allocating the training data than distribut-
ing original disk logs for preprocessing. The third challenge
pertains to multiple-to-multiple data allocation. Suppose that
multiple sources originate the training data which is fed into a
distributed prediction model (e.g., an ensemble of base learn-
ers). The absence of a global data view and the heterogeneity
of data sources (e.g., variations in failure occurrences and
disk counts) necessitate careful decision-making regarding the
allocation of sources to train specific base learners. Allocating
a data source independently to train a particular base learner
may hinder the development of an accurate prediction model
due to insufficient data. Conversely, sharing data sources
across base learners can lead to significant data redundancy
and overfitting in the training process.

To address the challenges, we propose SCALEDFP, a
general framework for scaling disk failure prediction, with
specific emphasis on the scalability of preprocessing. Specif-
ically, SCALEDFP scales disk failure prediction to a multi-
source stream mining problem. By tracing back disk logs
originating from multiple data sources, it views disk logs as
multiple evolving streams of time-series data. The core design
includes three techniques: (i) near-data preprocessing, which
preprocesses original disk logs near their sources to mini-
mize the data transmission to a remote preprocessing facility,
(ii) random downsampling, which keeps all positive samples
and relevant negative samples for training to mitigate data
inflation in preprocessing, and (iii) training data allocation,

which ensures the proper assignment of training data from
multiple data sources to an ensemble of base learners in a
prediction model and optimizes the data transmission.

To summarize, we make the following contributions:
• We present SCALEDFP, a general framework for scaling

disk failure prediction through multi-source stream mining.
SCALEDFP focuses on the scalability of preprocessing
before training, by performing near-data preprocessing, ran-
dom downsampling, and training data allocation.

• We implement a complete prototype of SCALEDFP based
on StreamDFP [17], a state-of-the-art stream mining frame-
work for adaptive disk failure prediction that is executed on
a single machine.

• We evaluate SCALEDFP on six public disk models from
two independent production environments, i.e., Backblaze
and Alibaba, including hard disk drives (HDDs) and solid-
state drives (SSDs). To demonstrate the scalability of prepro-
cessing, we evaluate the system performance of SCALEDFP
on Alibaba Cloud [1] with up to 130 instances. It achieves
the throughput gains of preprocessing and training by up to
41.6× and 9.1×, respectively, while maintaining a compa-
rable prediction accuracy compared to StreamDFP [17].
Our SCALEDFP prototype is open-sourced at

https://github.com/shujiehan/ScaleDFP.

II. BACKGROUND AND MOTIVATION

We formulate the problem of scaling disk failure prediction
and present the challenges of the scalability of preprocessing.

A. Scaling Disk Failure Prediction

Traditional disk failure prediction. Traditional disk failure
approaches can be divided into two categories, i.e., offline
learning and online learning. Offline learning approaches [9],
[28], [31], [43], [48] assume that all data to use is collected
and available in advance. They feed the available data into
prediction models for training. In practice, data is collected
continuously, such that the distribution of collected data is
changing with time (called concept drift [14]). Concept drift
causes prediction models to age and become inaccurate. Thus,
to keep prediction models updated with newly collected data,
offline learning approaches have to retrain prediction models
periodically from scratch [41]. On the other hand, online
learning approaches [17], [41] regard the collected data as a
single continuous data stream, such that they obtain the global
distribution of data and train prediction models incrementally
with the updated data.
Problem formulation. Our goal is to scale out disk failure
prediction by formulating it as a multi-source stream mining
problem. We conceptualize disk logs as continuously collected
data streams originating from multiple sources, with the total
number of data sources denoted by n. Specifically, we consider
a typical data center composed of multiple racks, each hosting
several machines connected via a top-of-rack switch. Each
machine is equipped with multiple disks. We regard each rack
as a data source that generates a data stream consisting of

disk logs from the disks attached to the rack. We decompose
the scaling disk failure prediction process into three phases:
• Preprocessing. We extract the performance and reliability

statistics from disk logs into numerical values (called feature
vectors). For training data, we convert the disk status to
numerical values (called labels) (see below), while for
prediction data, the disk status is unknown. We call a pair of
(feature vector, label) as a labeled sample. We allocate the
training data from multiple streams into a prediction model.

• Training. We feed multiple streams of labeled samples
simultaneously into the prediction model and update it
continuously over time.

• Prediction. We use the prediction model to predict the status
of a disk within the near future (e.g., the next 30 days).
We model disk failure prediction as a binary classification

problem by assigning the values of 0 or 1 to labels to indicate
healthy or failed disks, often referred to as negative samples
and positive samples, respectively. The binary classification
problem can also be extended to general prediction tasks
such as regression and multi-class classification. In regression,
continuous values are assigned to labels, whereas in multi-
class classification, discrete values are assigned.
Scope of this work. To facilitate stream mining, we employ in-
cremental learning algorithms as our prediction models, which
perform real-time predictions over data streams and adapt
incrementally based on incoming labeled samples. We con-
sider state-of-the-art incremental learning algorithms grounded
in decision tree techniques, particularly ensemble learning
algorithms, which use single decision trees as base learners.
Such algorithms combine predictions of multiple decision trees
to enhance overall prediction accuracy. To demonstrate the
generality of our approach for different algorithms, we focus
on two variants of ensemble learning algorithms with concept-
drift adaptation, namely (i) Bagging with Adaptive sliding
window (BA) [8] and (ii) Adaptive Random Forests (ARF)
[15]. Both algorithms support parallel training of base learners.

Although some prior studies [28], [38], [42], [47] also
apply deep neural networks (DNNs) to disk failure predic-
tion, we focus on decision tree-based incremental learning
algorithms. First, decision tree-based algorithms achieve good
performance on disk failure prediction [9], [41], [43], [48], and
even a higher prediction accuracy than DNNs [48]. Second,
DNNs in the realm of stream mining require buffering a
significantly larger number of time-series samples for training,
which results in higher memory overhead compared to other
incremental learning algorithms [17]. We pose using DNNs for
scaling disk failure prediction via multi-source stream mining
as our future work.

B. Challenges in Scalability of Preprocessing

Scaling disk failure prediction faces the following chal-
lenges in the scalability of preprocessing before training.
(C1) Additional data movements from data collection to
training. Recall from Section I that data is collected into a
monitoring system. Most existing monitoring systems (e.g.,
time-series databases [37] or stream processing systems [11],

Feature
extraction

Data
stream

Buffering

Online
labeling

Time-window
downsampling

Data collectors

…

Output

Near-data preprocessing
Positive samples Negative samples

Random
downsampling

Training data allocation

Customized Poisson sampling

Local sample
counts

Coordinator

Ratio of global
sample counts

Sequenced
data retrieval
Sequenced

data retrieval

Sequenced
data retrieval

Base learner(s)

Base learner(s)

Base learner(s)
… …

Receivers

Prediction
model

Fig. 1: Architectural overview.

[20], [39], [45]) provide statistical data analytics, but lack
specialized capabilities necessary for disk failure prediction.
Also, existing distributed ML systems [6], [22], [34] are
primarily designed to optimize ML job execution, with limited
considerations on data collection. Handling data collection and
training separately can introduce additional overheads (e.g.,
data movements [36] and querying [37]) due to the use of
external ML-based platforms.
(C2) Data inflation in preprocessing. Traditional preprocess-
ing approaches inflate the original data via online labeling
[17], [41] and feature generation [48], and hence intensify the
demand for memory capacity. First, online labeling buffers re-
cent samples for labeling soon-to-fail disks as positive samples
to increase the sample count. For example, StreamDFP [17]
buffers 30-day samples for online labeling, which results in
30× as many as millions of disks in a large deployment of
production data centers (e.g., Azure [29]). Also, feature gen-
eration spawns statistical features based on original features,
which augments the feature count. For instance, generating
438 additional features based on 26 features expands the
training data 17.8× as much as the original data [48].
(C3) Multiple-to-multiple data allocation. To address scal-
ability concerns, preprocessing is deployed in a cluster for
parallel processing. We refer to allocating training data from
multiple data sources to multiple base learners as multiple-to-
multiple data allocation. However, state-of-the-art incremental
learning algorithms (e.g., BA and ARF) are designed for a
single continuous data stream and rely on Poisson sampling
[10], [13] for allocating training data to base learners. Also, to
address the data imbalance issue [9] in disk failure prediction,
where the number of negative samples (i.e., healthy disks)
vastly outnumbers that of positive samples (i.e., failed disks),
previous studies [17], [41] customize Poisson sampling by
configuring different hyper-parameters for negative and posi-
tive samples. As multiple data streams can be heterogeneous
in terms of disk counts and failure occurrences (Figure 2 in
Section III-B), which change over time, applying this alloca-
tion approach faces the following open issues: (i) determining
the parameters of Poisson sampling for multiple data streams
and (ii) adapting the parameters of Poisson sampling over time
for multiple data streams.

III. DESIGN

We present the design of SCALEDFP, a multi-source stream
mining framework for scaling disk failure prediction. To
address the challenges in Section II-B, our design goals are as
follows:

• Scalability. SCALEDFP should be scalable for disk failure
prediction with the number of data streams.

• System throughput. SCALEDFP should be efficient for
processing data, especially for preprocessing and training.
It is expected to improve the throughput of preprocessing
and training.

• Prediction accuracy. SCALEDFP is expected to provide
prediction accuracy guarantees by properly allocating sam-
ples from multiple sources for training.

A. Design and Architecture Overview

SCALEDFP is a framework for scaling disk failure predic-
tion, focusing on data preprocessing before training, as shown
in Figure 1. We highlight the key elements in the design:
• Near-data preprocessing. SCALEDFP considers that data

is collected from multiple sources, instead of relying on
a prepared dataset that is made available by a monitoring
system. It performs immediate data preprocessing at each
data source as the data is collected, minimizing the need for
extensive transfers of raw data to a remote preprocessing
location (C1 addressed).

• Random downsampling. To mitigate the data inflation
issue, SCALEDFP avoids transferring unused negative sam-
ples to base learners after preprocessing. It performs random
downsampling at each data source, ensuring that all positive
samples and only relevant negative samples are allocated to
base learners (C2 addressed).

• Training data allocation. Instead of aggregating all train-
ing data into a single stream for allocation, SCALEDFP
performs training data allocation on each data source,
leveraging lightweight global information. Each data source
independently allocates training data to base learners based
on the weights of samples to minimize data transmissions.
Also, when aggregating multiple data streams into base
learners, SCALEDFP maintains a chronological order of
time-series samples (C3 addressed).

Architecture overview. SCALEDFP consists of three primary
components: multiple data collectors, a coordinator, and
receivers. Initially, data collectors, each of which is a ma-
chine randomly selected within a rack, gather disk logs from
connected machines periodically (e.g., daily) (Section II-A),
capitalizing on their substantial network bandwidth. These
data collectors conduct near-data preprocessing on continuous
streams of disk logs, including feature extraction, buffer-
ing, online labeling, and time-window downsampling (Sec-
tion III-B). To alleviate data inflation, SCALEDFP performs
random downsampling on each data collector to retain all

…

Data streams
…1

2

Time

…

L days
buffering window

n

…

Positive samples Negative samples

Fig. 2: Time-window downsampling. Here, we deduplicate multiple
samples at the same timestamp for one data stream.

positive samples and relevant negative samples (Section III-C).
SCALEDFP then allocates the training data from data col-
lectors to base learners (Section III-D). Specifically, the co-
ordinator aggregates local counts of positive and negative
samples forwarded from data collectors to derive the global
positive-to-negative sample ratio. With the lightweight nature
of receiving sample counts, the coordinator avoids becoming a
bottleneck. It subsequently disseminates the global positive-to-
negative sample ratio to each data collector which leverages
such global information to perform the customized Poisson
sampling. Also, the data collectors transmit the training data
to receivers, each of which maintains a chronological order of
time-series samples for a subset of base learners via sequenced
data retrieval. Finally, the prediction model conducts training
and prediction and then outputs prediction results of disk
failures in the near future (Section III-E).
Comparisons with StreamDFP [17]. StreamDFP, designed
for single-machine execution, does not address the scalability
challenges of preprocessing (Section II-B). It relies on a
prepared dataset collected into a monitoring system and pre-
processes data on a single stream without parallel capability.
In addition, when preprocessing and training are deployed sep-
arately, StreamDFP transfers all training data, including many
unused negative samples, leading to high network bandwidth
consumption. It also computes the weight of Poisson sampling
for each base learner on each sample, which incurs significant
computational overhead. In contrast, SCALEDFP introduces
several enhancements over StreamDFP. It performs near-data
preprocessing on multiple data streams, enabling parallel data
processing. Also, by implementing random downsampling,
SCALEDFP reduces the amount of training data that needs
to be allocated, saving network bandwidth and decreasing
computational overhead by retaining only useful training data.
Furthermore, SCALEDFP optimizes the data transmission pro-
cess by allocating training data on data collectors in parallel
and filtering out samples with zero weights for all base learners
before transmission, thereby reducing the network load.

B. Near-Data Preprocessing

Workflow. Starting with the collection of raw data from data
collectors, the preprocessing workflow follows the traditional
approach in online learning, including feature extraction,
buffering, online labeling, and time-window downsampling.
• Feature extraction. When dealing with a continuous stream

of daily disk logs as input, SCALEDFP extracts disk logs

as features for training and prediction (see more details of
datasets in Section V). We use all features by default since
it is difficult to select effective features without a global
view of all data streams. We pose the feature selection under
multiple data streams as our future work.

• Buffering. To label the samples on the fly, SCALEDFP
borrows the idea of buffering [17]. It also uses a fixed-size
sliding window (called the buffering window) (e.g., 30 days)
to buffer recent samples for online labeling.

• Online labeling. SCALEDFP performs online labeling to
alleviate data imbalance. Specifically, it performs online
labeling in the buffering window to label soon-to-fail disks
as positive samples. We refer to the number of extra labeled
days before a failure happens as the extra labeled days. If
a failure is found, SCALEDFP labels the samples within
the extra labeled days (e.g., 20 days) before the failure
occurrence as positive samples.

• Time-window downsampling. SCALEDFP performs time-
window downsampling to further alleviate data imbalance. It
selects all positive samples and the last few days of negative
samples in the buffering window (Figure 2). The length of
the time window for selecting negative samples is denoted
by L and set as seven days by default.

Straw-man solutions. To tackle C1, we need to consider the
deployment of data collection, preprocessing, and training. We
identify two deployment strategies to distribute raw data from
multiple data sources. The first strategy involves routing the
raw data to a dedicated preprocessing cluster. After preprocess-
ing (or a batch of preprocessing), the preprocessed data is then
transferred to another dedicated cluster for training. However,
this approach results in double data movements, including data
transfers from multiple sources to the preprocessing cluster
and then to the training cluster. The second strategy opts to
distribute the raw data directly to a cluster responsible for both
preprocessing and training. While this approach eliminates the
need for double data transfers, it introduces the potential for
resource contentions (e.g., memory and CPUs).
Observation. We examine the number of data movements
from data collection to preprocessing. As the raw data is
emitted from multiple sources, it means that the raw data is
naturally distributed. Also, preprocessing the raw data from
one source is independent of others, implying that prepro-
cessing across different sources can be executed in parallel.
Thus, we argue that the data movement from data collection
to distributed preprocessing is redundant.
Solution. Based on our observation, we introduce near-data
preprocessing to minimize data movements from data collec-
tion to preprocessing as well as alleviate resource contention.
Specifically, SCALEDFP employs a localized approach to re-
duce data transfers in the preprocessing. Once each data collec-
tor collects disk logs, SCALEDFP executes the preprocessing
on each data collector locally, including feature extraction,
buffering samples into a dedicated local buffering window for
online labeling, and time-window downsampling. Also, near-
data preprocessing mitigates resource contention by offloading
the buffering tasks (e.g., feature extraction and online labeling)

from centralized processing units to distributed data collectors,
enabling parallel processing.

C. Random Downsampling

Problem. Recall from Section III-B that the preprocessing
workflow includes buffering and time-window downsampling
which increase the volume of preprocessed data. As the
negative samples are dominant within the buffering window,
the volume of preprocessed data depends on the L days of
negative samples selected by the time-window downsampling.
Straw-man solution. An intuitive approach is by compression,
which mitigates data inflation of preprocessing. While state-of-
the-art compressing techniques [40] achieve substantial space
savings (e.g., over 90%), there is a trade-off. Decompressing
the preprocessed data from multiple data streams may resem-
ble handling numerous small files, potentially leading to inef-
ficiencies when accessed with a single thread. Alternatively, if
managed with multiple threads in receivers for decompressing,
it could consume excessive computational resources.
Observation. We next pinpoint if such preprocessed data is all
needed for training. We observe that StreamDFP [17] performs
two-phase downsampling before training, where the first-phase
downsampling corresponds to the time-window downsampling
and the second-phase downsampling conducts the customized
Poisson sampling (Section II-B). Before and after the second-
phase downsampling, the actual ratio of negative samples to
positive ones is reduced from more than 100:1 to around
10:1 (based on the datasets in Table I). It implies that the
preprocessed data can be further downsampled.
Solution. SCALEDFP uses random downsampling to prevent
the unused negative samples from transferring. Specifically,
after selecting the recent L days of negative samples, each
data collector further randomly selects a subset of negative
samples, which is referred to as the downsampling ratio
(currently set as 10%). We evaluate the different percentages
of keeping negative samples and find that keeping only 10%
does not generally affect the prediction accuracy (Exp#6 in
Section V-C). Also, to examine if data inflation still exists, we
compare the amount of data after random downsampling with
the amount of raw data before preprocessing. Let a denote the
total number of disks. As negative samples are dominant after
near-data preprocessing, we estimate the transferred training
data as L× a× 10% = 0.1aL. As L is often selected as the
most recent days (e.g., seven days), SCALEDFP mitigates data
inflation with the amount of training data less than that of raw
data (e.g., equivalent to 70% of raw data) to start allocation.

D. Training Data Allocation

Main idea. To address C3, we extend the customized Poisson
sampling [17], [41] from a single data source in ensemble
learning algorithms to multiple data sources. This sampling
method requires configuring two hyper-parameters, denoted as
λn and λp (where λn > 0 and λp > 0), representing the Poisson
distribution for negative and positive samples, respectively. For
each sample, a weight is generated using the corresponding
Poisson distribution, indicating the frequency of a sample’s

Data collector

0
1

4

0

6

1
0

3

0

9
9

0

5

0

1

5
3

1
0

0

1

0

7

0
1

1
1
0
0
0X

X

X

X
X

X

X

X

X

X
X
X

X

X

X

X
X
X
X
X

Features+label Weights

Sa
m

pl
es

X 7

X
1XX

X X

1
1

X
X

0

X X

X 1
X

Base learner 1

XX

1X

X 1

3X

0
5

X

X
X 1
X

X XX

Base learner 2

91
5

1
X
X X

X
X

X

X

1

X 0X

X
X X

Base learner 3
X

3
1

X X
1

1X
XX

X X

X

0X X
X

9
Base learner 4

1X X 0X X

1
4X

XX
X 1

XX 6
X X

Base learner 5

Fig. 3: Example of optimized data transmission.

update during training. To mitigate the data imbalance issue
[9] (Section II-B), λn is typically set less than λp to ensure that
positive samples carry more weight than negative ones. One
may argue that it is easy to directly integrate the customized
Poisson sampling into each data collector. However, we notice
that the implementation of Poisson sampling in StreamDFP
relies on sample counts of positive and negative samples,
which is not mentioned in the paper [17]. Specifically, λp
remains fixed during training, while λn varies with the ratio
of the number of positive samples to that of negative samples
(denoted by rg) each day. This adaptation mechanism ensures a
proportional allocation of negative samples relative to positive
samples. Thus, such global information needs to be aggregated
from multiple data sources each day.
Coordinator. We introduce a coordinator in SCALEDFP to
aggregate the global count of positive and negative samples.
The coordinator collects local counts of positive and negative
samples each day from all data collectors. As sample counts
consist of only two integer values per data collector, the
latency associated with receiving local counts is negligible.
Hence, for synchronization purposes, the coordinator waits
until it receives local counts from all data collectors. The
coordinator aggregates the total counts of positive and negative
samples, respectively. It then computes the ratio rg and sends
back rg to each data collector. In case the number of positive
samples is zero, we set rg as a small value (e.g., 0.001)
to prevent the update of λn from becoming zero in data
collectors. Also, as aggregating local counts is lightweight,
the coordinator does not become a bottleneck with a large
number of data collectors.
Optimized data transmission. We optimize the data transmis-
sion in SCALEDFP by ensuring that each base learner receives
all positive samples and only relevant negative samples. First,
data collectors update λn with rg. Given an initial λn (denoted
by λn0), each data collector updates λn by multiplying λn0
and rg. Second, for a sample (positive or negative), each data
collector uses the corresponding Poisson distribution (λp or
λn) to compute a weight for each base learner. A sequence of
weights across base learners is referred to as a weight vector
concatenated with the feature vector for each sample. Figure 3
shows that such feature and weight vectors from multiple
samples are aggregated into a matrix, whose dimension is
determined by the number of samples (rows) and the total
number of features, weights, and labels (columns). Third,
given that each base learner is deployed on a server, each

data collector sends only a subset of the matrix to each base
learner. For each base learner, each data collector examines
the corresponding weight column, filters out the samples with
zero weight, and transmits the remaining samples along with
their feature vectors and the corresponding weight column.
Mathematical analysis of the amount of data transmission.
We analyze the amount of data transmission before and after
optimized data transmission. Considering the samples on a
data collector after random downsampling, we denote the
count of positive samples and negative samples by cp and cn,
respectively. The number of negative samples after Poisson
sampling is denoted by c′n, where c′n < cn. For brevity, we
denote the dimension of the feature vector plus one label by
m and the number of base learners by T . Suppose that base
learners are deployed on q servers, where T is divisible by q.
Without optimized data transmission, a data collector needs
to send N := (cn + cp)×m× q data to the prediction model.
In contrast, with optimized data transmission, a data collector
sends N′ := cp× (m+ T

q)×q+c′n× (m+ T
q)×q = (cp +c′n)×

(m+ T
q)×q to the prediction model. Also, the ratio of cp to

cn is close to rg. Let N′ < N, and we derive c′n
cn

<
m− T

q rg

m+ T
q

.

We consider two extreme cases of deployment: i) deploying
all base learners on one server (i.e., q = 1) and obtaining
c′n
cn

<
m−rgT
m+T and ii) deploying each base learner on one server

(i.e., T/q = 1) and obtaining c′n
cn
<

m−rg
m+1 . Based on the settings

and datasets (Section V-A), these conditions are easy to satisfy
and thus N′ < N. Our evaluation shows the effectiveness of
training data allocation (Exp#2 in Section V-B).
Sequenced data retrieval. SCALEDFP uses receivers to
maintain the chronological order of training data received
from data collectors. Specifically, each receiver is responsible
for receiving the relevant training data of T

q base learners,
including m columns of features (including one label) and T

q
columns of weights. For synchronization, after receiving the
training data in one buffering window from all data collectors,
it sorts all received samples based on their timestamps in
the buffering window. In case there is a straggler in data
collectors, SCALEDFP sets the timeout threshold of waiting
for the straggler as a short time (e.g., 2 seconds).

E. Training and Prediction

Training. Each base learner uses the weight vector associated
with each sample for training, bypassing the original Poisson
sampling mechanism in ensemble learning. When a receiver
supervises a single base learner, all samples possess non-
zero weights, facilitating direct training input. Similarly, if a
receiver supervises multiple base learners, each base learner is
trained using the samples with non-zero weights accordingly,
significantly reducing the number of samples compared to that
without training data allocation. Base learners continuously
adapt to concept drift via change detectors [8], [15]. Note
that change detectors still need to use the zero-weight samples
(only feature and label columns) for detecting concept drifts.
As change detectors can be deployed on different servers

from base learners [23], we leave the optimization of data
transmission for change detectors in our future work.
Prediction. SCALEDFP predicts whether a disk will fail
in the near future. Specifically, each data collector extracts
features and promptly forwards unlabeled samples to each
receiver without maintaining the chronological order, as all
unlabeled samples are derived from the same timestamp. Each
receiver assigns each unlabeled sample to every base learner
for prediction. The prediction model collects and combines
the predicted values from the base learners for each sample,
yielding the final prediction results.

IV. IMPLEMENTATION

We prototyped SCALEDFP in Python, comprising data col-
lectors, a coordinator, and receivers with ∼550 LoC. Among
different components, we implement network communications
using Remote Procedure Calls (RPCs) via the gRPC li-
brary [5]. For data collectors, we realize near-data preprocess-
ing based on the preprocessing workflow in StreamDFP and
integrate random downsampling. After random downsampling,
each data collector sends its local counts of positive and
negative samples to the coordinator. The coordinator then
returns the ratio of the total number of positive samples to
negative samples to each data collector. We also implement
the customized Poisson sampling on data collectors. Due to
Python’s inherent performance limitations in for-loops for
computing weights for each sample across all base learners,
we optimize the Poisson sampling computation using the
pybind11 library [3]. Additionally, data collectors transmit
training data to receivers via RPCs. Receivers ensure receipt
of training data from all data collectors and sort samples by
their timestamps before writing them into the local file system.
Samples are read from the local file system and fed into the
ensemble learning algorithms (i.e., BA and ARF). We realize
the ensemble learning algorithms based on StreamDFP and
replace its original Poisson sampling approach by our training
data allocation approach.

V. EVALUATION

We conduct a trace-driven evaluation to evaluate the system
performance and prediction accuracy of SCALEDFP. We
summarize our findings as follows:
• In preprocessing, SCALEDFP demonstrates the scalability

with an increasing number of data collectors, achieving up to
a 41.6× throughput gain compared to StreamDFP (Exp#1).
Enabling training data allocation boosts the preprocessing
throughput gain, showing a 4.3× throughput gain compared
to disabling training data allocation (Exp#2). In addition,
the training throughput benefits from random downsampling,
achieving throughput gains of up to 13.2× and 8.4× for
BA and ARF, respectively, compared to disabling random
downsampling (Exp#3).

• SCALEDFP attains comparable, and in some cases, higher
prediction accuracy than StreamDFP (Exp#4). When dealing
with multiple data collectors for training, SCALEDFP en-
sures that the prediction accuracy remains comparable to that

Dataset Disk model (ID) Capacity Disk count # failures # features Period Duration

Backblaze
HDD Seagate ST3000DM001 (D1) 3 TB 1,930 203 50 2014-02-15 to 2015-05-20 460 days
HDD Seagate ST4000DM000 (D2) 4 TB 35,587 797 48 2015-01-01 to 2016-04-04 460 days
HDD HGST HMS5C4040BLE640 (D3) 4 TB 14,613 65 34 2019-01-01 to 2020-04-04 460 days

Alibaba
SSD MA1 (D4) 480 GB 39,860 1,126 40 2018-01-03 to 2019-04-07 460 days
SSD MB1 (D5) 1920 GB 42,866 917 38 2018-01-03 to 2019-04-07 460 days
SSD MC1 (D6) 1920 GB 191,589 1,421 42 2018-01-03 to 2019-04-07 460 days

TABLE I: Overview of datasets.

of a single data collector (Exp#5). In random downsampling,
keeping 10% of negative samples generally achieves a
comparable prediction accuracy compared to keeping all
negative samples (Exp#6).

A. Methodology

Datasets. To validate our evaluation, we employ SMART
(Self-Monitoring, Analysis, and Reporting Technology) logs
[35] to predict impending disk failures. Within modern data
centers [18], [27], [43], [48], a monitoring daemon is often
deployed to periodically collect SMART logs, typically on a
daily [18], [43] or hourly [27] basis. SMART is an embedded
monitoring system found in the firmware of disk drives,
encompassing both hard disk drives (HDDs) and solid-state
drives (SSDs). It functions by detecting and reporting the
performance and reliability statistics of a disk drive in the form
of numerical values, referred to as attributes. Each attribute
comprises two types of values: raw and normalized values.
We extract each value of an attribute as a feature.

We use two publicly available datasets collected from dis-
tinct production environments on a daily basis as shown in
Table I. The first dataset includes HDD failures from Back-
blaze [4], while the second dataset comprises SSD failures
from Alibaba [18], [43]. From each dataset, we select three
commonly used disk models, namely D1 to D6, which are
evaluated in prior studies [9], [17], [31], [41], [48]. For a disk
model, we extract all SMART attributes (including raw and
normalized values) as features. Also, to simulate a large-scale
disk deployment, we treat all disk models in each dataset as a
whole collection, considering that the Backblaze and Alibaba
datasets encompass around 100 K HDDs [4] and 1 M SSDs
[18], respectively. For experiments involving multiple data
collectors (Exp#1 and Exp#4), we evenly divide the entire
dataset into multiple partitions, aligning with the number of
data collectors. Each data collector processes a designated
partition as input.
Metrics. We evaluate both the system performance and pre-
diction accuracy on a daily basis. For the system performance,
we measure the throughput of preprocessing and training
separately, instead of an end-to-end throughput. Specifically,
the throughput of preprocessing is calculated by the number
of disks for preprocessing over the execution time starting
from feature extraction to the end of sequenced data retrieval
on receivers (Exp#1). On the other hand, the throughput of
training is calculated by the number of disks for preprocessing
over the execution time of training (Exp#2).

For the prediction accuracy, we consider three classical
metrics (also used in StreamDFP [17]):

• Precision: The ratio of actual failed disks that have been
correctly predicted as failures to the total number of disks
predicted as failures, whether correctly or incorrectly.

• Recall: The ratio of actual failed disks that have been
accurately predicted as failures to the total number of actual
failed disks.

• F1-score: 2×precision×recall
precision+recall .

Testbeds. We evaluate SCALEDFP on a local testbed and
Alibaba Cloud [1]. Our local testbed consists of two servers.
Each server is equipped with two 20-core 2.10 GHz Intel
Xeon(R) Gold 5218R CPUs, 256 GiB of RAM, and a Seagate
ST4000NM000A-2HZ100 7200 RPM 4 TiB SATA hard disk.
These two servers are connected via a 1 Gbps network. We
leverage our local testbed to measure the training throughput
(Exp#3) and prediction accuracy (Exp#4 to Exp#6). Also, to
evaluate the scalability of preprocessing (Exp#1 and Exp#2),
we provision 130 general-purpose instances on Alibaba Cloud
for SCALEDFP, which includes multiple data collectors, a
coordinator, and one receiver. We fix one receiver for receiving
the training data for a fair comparison with StreamDFP and
it would not be the bottleneck in SCALEDFP with optimized
data transmission (Exp#2). All components are deployed in
ecs.g6.2xlarge instances with 8 vCPUs and 32 GiB
RAM. Each instance is equipped with a 40 GiB enhanced SSD
with performance level PL0 [2] and is installed with Ubuntu
20.04. All instances are connected via an 8 Gbps network.

Default setups. We consider StreamDFP [17] as the state-
of-the-art baseline without scaling disk failure prediction
via stream mining. For a fair comparison with StreamDFP,
we configure the same evaluation durations as the same in
StreamDFP [17]. Specifically, we choose identical 460 days
of samples and set the same start date for each dataset (shown
in the “Period” column). For each dataset, we initialize the
prediction model from scratch with the initial 30 days of sam-
ples. For both SCALEDFP and StreamDFP, we set the extra
labeled days as 20 days for online labeling. For SCALEDFP,
we set the random downsampling ratio as 10% by default,
while we evaluate the impact of the random downsampling
ratio in Exp#6. Subsequently, we carry out daily predictions
of disk failures for the subsequent 30 days. Our evaluation
spans 400 days in total for all datasets for Exp#3 to Exp#6,
while our evaluation spans 30 days for Exp#1 and Exp#2 due
to the limited capacity of SSDs in our Alibaba Cloud testbed.
We run two ensemble learning algorithms, i.e., BA and ARF,
and fix 30 base learners as in StreamDFP [17]. To ensure fair
comparisons on prediction accuracy, we fix the threshold of the
average false positive rate (FPR) over the evaluation period for

100

101

102

103

104104

1 2 4 8 16 32 64 128
of data collectors

T
h
p
t.
 (

K
 d

is
k
s
/s

)

StreamDFP ScaleDFP ScaleDFP w/o training data allocation

100

101

102

103

104104

1 2 4 8 16 32 64 128
of data collectors

T
h
p
t.
 (

K
 d

is
k
s
/s

)

StreamDFP ScaleDFP ScaleDFP w/o training data allocation

100
101
102
103
104104

1 2 4 8 16 32 64 128
of data collectors

T
h
p
t.
 (

K
 d

is
k
s
/s

)

Fig. 4: Exp#1 (Scalability of pre-
processing) and Exp#2 (Impact of
training data allocation). X-axis
and Y-axis are in log scale.

0
5

10
15
20
25
30

D1 D2 D3 D4 D5 D6

T
h

p
t.

 (
K

 d
is

k
s
/s

)

Without random downsampling
With random downsampling

0
5

10
15
20
25
30

D1D2D3D4D5D6

T
h

p
t.
 (

K
 d

is
k
s
/s

)

0
20
40
60
80

100
120
140

D1D2D3D4D5D6

T
h

p
t.

 (
K

 d
is

k
s
/s

)

(a) BA (b) ARF

Fig. 5: Exp#3 (Impact of ran-
dom downsampling on training
throughput).

each disk model. Specifically, we calculate the FPR on each
day, which is defined as the fraction of falsely predicted failed
disks over the total number of healthy disks in the subsequent
30 days. We set the default FPR at 1.0%, which aligns with
previous studies [17], [41]. We conduct the experiments across
five runs and report the average results over these runs with
the maximum and minimum error bars.

B. System Performance

Exp#1 (Scalability of preprocessing). We evaluate the scal-
ability of preprocessing in a large-scale disk deployment,
covering the entire process from data collection to prepro-
cessing. For StreamDFP, we emulate data collection from
one or multiple data collectors via TCP socket-based file
transmission to a single server where StreamDFP executes the
preprocessing. We vary the number of data collectors from
1 to 128 for both StreamDFP and SCALEDFP. To ensure
a sufficient number of disks for preprocessing on individual
data collectors as the number of collectors increases, both
SCALEDFP and StreamDFP execute preprocessing on D6,
which hosts the largest number of disks.

Figure 4 shows that SCALEDFP scales to a large number of
data collectors. We first compare the preprocessing through-
put between SCALEDFP and StreamDFP, while we compare
the preprocessing throughput with and without training data
allocation in Exp#2. For one data collector, the throughput of
SCALEDFP is higher than that of StreamDFP by 16.5×, since
the execution time of collecting data is dominant, account-
ing for 94.9% of total execution time for StreamDFP. With
increasing the number of data collectors from 2 to 128, the
throughput gains of SCALEDFP increase from 17.4× to 41.6×
those of StreamDFP. In contrast, although the throughput of
StreamDFP also increases with 2 to 16 data collectors, it is
throttled by the execution of preprocessing on a single server
with 32 to 128 data collectors. This implies that near-data
preprocessing is effective for scaling the preprocessing.
Exp#2 (Impact of training data allocation). We evaluate the
preprocessing throughput by enabling and disabling training
data allocation. Disabling training data allocation involves
deactivating the customized Poisson sampling and optimized
data transmission in data collectors, while retaining the se-
quenced data retrieval to ensure the prediction accuracy. We
still use Figure 4 to show the results. For one data collector, the
throughput of SCALEDFP is lower than that without training
data allocation by 5.3% due to the computation overhead of

0

20

40

60

80

100

D1 D2 D3 D4 D5 D6

F
1

-s
c
o

re
 (

%
)

StreamDFP ScaleDFP

0

20

40

60

80

100

D1 D2 D3 D4 D5 D6

P
re

c
is

io
n

 (
%

)

0

20

40

60

80

100

D1 D2 D3 D4 D5 D6

R
e

c
a

ll
(%

)

0

20

40

60

80

100

D1 D2 D3 D4 D5 D6

F
1

-s
c
o

re
 (

%
)

(a) BA; precision (b) BA; recall (c) BA; F1-score

0

20

40

60

80

100

D1 D2 D3 D4 D5 D6

P
re

c
is

io
n

 (
%

)

0

20

40

60

80

100

D1 D2 D3 D4 D5 D6

R
e

c
a

ll
(%

)

0

20

40

60

80

100

D1 D2 D3 D4 D5 D6

F
1

-s
c
o

re
 (

%
)

(d) ARF; precision (e) ARF; recall (f) ARF; F1-score

Fig. 6: Exp#4 (Justification of prediction accuracy).

customized Poisson sampling. However, the throughput gains
of SCALEDFP increase from 1.1× to 4.3× those without
training data allocation, especially for 64 (2.2×) and 128
(4.3×) data collectors. With optimized data transmission, the
receiver does not become a bottleneck even as the number of
data collectors increases. In contrast, without optimized data
transmission, the receiver is overloaded with training data from
numerous data collectors (e.g., 128 data collectors). Moreover,
adding more receivers does not alleviate this overload, as each
data collector sends the same training data to all receivers (i.e.,
N in Section III-D).
Exp#3 (Impact of random downsampling on training
throughput). Disabling the training data allocation, we eval-
uate the training throughput before and after enabling random
downsampling for BA and ARF. Figure 5 shows that random
downsampling improves the training throughput by 2.2× to
13.2× and 1.3× to 8.4× for BA and ARF, respectively, on all
disk models, compared to training without random downsam-
pling. The reason is that random downsampling further reduces
the number of negative samples by 90%. Although Poisson
sampling in training data allocation can also reduce the number
of negative samples for training, random downsampling is
still efficient for reducing the number of negative samples for
computing the weights in Poisson sampling.

C. Prediction Accuracy

Exp#4 (Justification of prediction accuracy). We first jus-
tify the prediction accuracy of SCALEDFP compared to
StreamDFP by fixing the number of data collectors as one.
Figure 6 shows that SCALEDFP generally achieves a predic-
tion accuracy comparable to StreamDFP for BA and ARF. The
differences in F1-scores between SCALEDFP and StreamDFP
are within 3.8% and 2.1% for BA and ARF, respectively,
except for the cases where SCALEDFP improves the F1-
scores of BA by 6.9% on D1 and 8.3% on D4. Overall,
SCALEDFP ensures a comparable prediction accuracy with
StreamDFP, while the reason for accuracy improvement is
that the random downsampling may just drop some unhelpful
negative samples.
Exp#5 (Prediction accuracy of multiple data collectors). We
evaluate the prediction accuracy by varying the number of data

0

20

40

60

80

100

1 2 4 8 16 32 64128
Data streams

F
1

-s
c
o

re
 (

%
)

D2 D4

0
20
40
60
80

100

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

of data partitions

F
1

-s
co

re
 (

%
)

0
20
40
60
80

100

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

of data partitions

F
1

-s
co

re
 (

%
)

(a) BA; F1-score (b) ARF; F1-score

Fig. 7: Exp#5 (Prediction accuracy of multiple data collectors). The
precision and recall are in the same trend with the F1-score and
omitted in plots.

0

20

40

60

80

100

1 2 4 8 16 32 64128
Data streams

F
1

-s
c
o

re
 (

%
)

D2 D4

0
20
40
60
80

100

10 20 30 40 50 all
Downsampling ratio (%)

F
1

-s
c
o

re
 (

%
)

0
20
40
60
80

100

10 20 30 40 50 all
Downsampling ratio (%)

F
1

-s
c
o

re
 (

%
)

(a) BA; F1-score (b) ARF; F1-score

Fig. 8: Exp#6 (Impact of downsampling ratio). “all” denotes keeping
all negative samples with disabling random downsampling. The
precision and recall are in the same trend with the F1-score and
omitted in plots.

collectors. We focus on two disk models D2 and D4 for HDD
and SSD, respectively. D2 has the highest disk count among
HDD datasets (D1 to D3), while D4 exhibits the highest failure
rate (i.e., failure count to total disk count) in the SSD dataset
(D4 to D6). Figure 7 shows that the F1-score remains stable
over the number of data collectors. Specifically, for D2 (D4),
SCALEDFP keeps the F1-scores of multiple data collectors for
BA and ARF close to that of one data collector, i.e., within
0.16% (0.33%) and 0.84% (0.69%), respectively.
Exp#6 (Impact of downsampling ratio). We vary the ran-
dom downsampling ratio from 10% to 50% and compare
the prediction accuracy with disabling random downsampling
(i.e., keeping all negative samples after the time-window
downsampling). Figure 8 shows the F1-score for D2 and D4
with different downsampling ratios. For ARF, the prediction
accuracy with a 10% downsampling ratio is close to that with
keeping all negative samples, i.e., the difference of 0.071%
for D2 and 0.46% for D4. In contrast, for BA, the prediction
accuracy with 10% downsampling ratio is higher than that
with keeping all negative samples by 8.3% for D4, while
lower than that with keeping all negative samples by 3.8%
for D2. The reason is that D4 has more negative samples
than D2, which is more crucial to reduce negative samples.
It also implies that the optimal downsampling ratio is related
to learning algorithms.

VI. RELATED WORK

Disk failure prediction. Extensive studies on disk failure pre-
diction have primarily centered on offline learning, assuming
that all training data is readily available. These prediction
approaches can be categorized into three types: (i) statis-
tical techniques (e.g., rank sum tests [21], Hidden-Markov

models [49], and quantile distribution analysis [30]), (ii) ma-
chine learning (e.g., naive Bayesian classifiers [16], multiple-
instance naive Bayesian learning [32], backpropagation neural
networks [50], decision trees [24], regularized greedy forests
[9], random forests [31], [43], [48], and gradient boosting
additive regression trees [44]), and (iii) deep neural networks
(e.g., recurrent neural networks [42], layerwise perturbation-
based adversarial training [47], convolutional neural networks
[28], [38], long short-term memory based siamese network
[46], long short-term memory for feature encoding [27], and
neighborhood-temporal attention model [29]). The closest re-
lated studies to ours are [17], [41], which apply online stream-
based learning for disk failure prediction and continuously
train the prediction model on the incoming data stream. How-
ever, SCALEDFP addresses the scalability of preprocessing
that is not considered in [17], [41]: (i) preprocessing in
parallel for multi-source stream mining (instead of on a single
machine), and (ii) reducing computational overhead and saving
network bandwidth by random downsampling and training
data allocation (instead of no preprocessing optimization).
Anomaly detection. Prior studies explore various anomaly
detection techniques (e.g., statistical approaches [19], machine
learning [7], and deep learning [33]). While some algorithms
(e.g., random forest [26]) are used in both anomaly detection
and disk failure prediction (e.g., [31], [43], [48]), we argue that
training prediction models in a streaming fashion is crucial for
multiple evolving data streams.
Distributed processing systems. Existing distributed process-
ing systems (e.g., Spark [45], Storm [39], Flink [11], and AF-
Stream [20]) primarily serve general-purpose data analytics
and ML tasks, but fall short of training prediction models on
disk failure prediction. Recent distributed machine learning
systems, including the parameter server [25], TensorFlow
[6], PyTorch [34], and BytePS [22], focus on optimizing
the execution of ML tasks but often lack the integration of
data collection, leading to substantial data movements before
training. In contrast, SCALEDFP addresses the scalability of
preprocessing for disk failure prediction.

VII. CONCLUSION

We present SCALEDFP, a multi-source stream mining
framework for scaling disk failure prediction. SCALEDFP
addresses the scalability of preprocessing before training for
disk failure prediction via near-data preprocessing, random
downsampling, and training data allocation. It achieves the
preprocessing throughput gains of up to 41.6× and the training
throughput gains of up to 13.2×, while maintaining a compa-
rable prediction accuracy compared to StreamDFP [17].

ACKNOWLEDGEMENTS

This work was supported in part by the National
Key Research and Development Program of China
(2023YFB2904600), National Natural Science Foundation of
China (62172007), and Fundamental Research Funds for the
Central Universities.

REFERENCES

[1] Alibaba Cloud. https://www.alibabacloud.com/product/ecs-pricing-
list/en.

[2] Alibaba Cloud - ESSDs. https://www.alibabacloud.com/help/en/elastic-
compute-service/latest/essds.

[3] pybind11 — seamless operability between C++11 and python.
https://github.com/pybind/pybind11.

[4] Backblaze dataset. https://www.backblaze.com/b2/hard-drive-test-
data.html, 2013.

[5] gRPC. https://grpc.io/, 2015.
[6] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, et al. TensorFlow: a system for
large-scale machine learning. In Proc. of USENIX OSDI, 2016.

[7] M. Ahmed, A. N. Mahmood, and J. Hu. A survey of network anomaly
detection techniques. Journal of Network and Computer Applications,
60:19–31, 2016.

[8] A. Bifet and R. Gavaldà. Adaptive learning from evolving data streams.
In Proc. of Springer IDA, 2009.

[9] M. M. Botezatu, I. Giurgiu, J. Bogojeska, and D. Wiesmann. Predicting
disk replacement towards reliable data centers. In Proc. of ACM
SIGKDD, 2016.

[10] L. Breiman. Bagging predictors. Machine learning, 24(2):123–140,
1996.

[11] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas. Apache Flink: Stream and batch processing in a single
engine. Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, 38(4), 2015.

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. In Proc. of ACM SOSP,
2007.

[13] Y. Freund, R. E. Schapire, et al. Experiments with a new boosting
algorithm. In Proc. of ACM ICML, volume 96, pages 148–156, 1996.

[14] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia. A
survey on concept drift adaptation. ACM Computing Surveys, 46(4):44,
2014.

[15] H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck,
B. Pfharinger, G. Holmes, and T. Abdessalem. Adaptive random forests
for evolving data stream classification. Machine Learning, 106(9-
10):1469–1495, 2017.

[16] G. Hamerly, C. Elkan, et al. Bayesian approaches to failure prediction
for disk drives. In Proc. of ACM ICML, 2001.

[17] S. Han, P. P. C. Lee, Z. Shen, C. He, Y. Liu, and T. Huang. StreamDFP:
A general stream mining framework for adaptive disk failure prediction.
IEEE Transactions on Computers, 72(02):520–534, 2023.

[18] S. Han, P. P. C. Lee, F. Xu, Y. Liu, C. He, and J. Liu. An in-depth study
of correlated failures in production SSD-based data centers. In Proc. of
USENIX FAST, 2021.

[19] V. Hodge and J. Austin. A survey of outlier detection methodologies.
Artificial intelligence review, 22:85–126, 2004.

[20] Q. Huang and P. P. C. Lee. Toward high-performance distributed
stream processing via approximate fault tolerance. In Proc. of VLDB
Endowment, 2016.

[21] G. F. Hughes, J. F. Murray, K. Kreutz-Delgado, and C. Elkan. Improved
disk-drive failure warnings. IEEE Trans. on Reliability, 51(3):350–357,
2002.

[22] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo. A unified
architecture for accelerating distributed DNN training in heterogeneous
GPU/CPU clusters. In Proc. of USENIX OSDI, 2020.

[23] N. Kourtellis, G. D. F. Morales, A. Bifet, and A. Murdopo. VHT:
Vertical hoeffding tree. In Proc. of IEEE ICBD, 2016.

[24] J. Li, X. Ji, Y. Jia, B. Zhu, G. Wang, Z. Li, and X. Liu. Hard drive
failure prediction using classification and regression trees. In Proc. of
IEEE/IFIP DSN, 2014.

[25] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su. Scaling distributed machine learning
with the parameter server. In Proc. of OSDI, 2014.

[26] D. Liu, Y. Zhao, H. Xu, Y. Sun, D. Pei, J. Luo, X. Jing, and M. Feng.
Opprentice: Towards practical and automatic anomaly detection through
machine learning. In Proc. of ACM IMC, 2015.

[27] Y. Liu, H. Yang, P. Zhao, M. Ma, C. Wen, H. Zhang, C. Luo, Q. Lin,
C. Yi, J. Wang, et al. Multi-task hierarchical classification for disk

failure prediction in online service systems. In Proc. of ACM SIGKDD,
2022.

[28] S. Lu, B. Luo, T. Patel, Y. Yao, D. Tiwari, and W. Shi. Making disk
failure predictions SMARTer! In Proc. of USENIX FAST, 2020.

[29] C. Luo, P. Zhao, B. Qiao, Y. Wu, H. Zhang, W. Wu, W. Lu, Y. Dang,
S. Rajmohan, Q. Lin, et al. NTAM: Neighborhood-temporal attention
model for disk failure prediction in cloud platforms. In Proc. of WWW,
2021.

[30] A. Ma, R. Traylor, F. Douglis, M. Chamness, G. Lu, D. Sawyer,
S. Chandra, and W. Hsu. RAIDShield: Characterizing, monitoring, and
proactively protecting against disk failures. ACM Trans. on Storage,
11(4):17, 2015.

[31] F. Mahdisoltani, I. Stefanovici, and B. Schroeder. Proactive Error
Prediction to Improve Storage System Reliability. In Proc. of USENIX
ATC, 2017.

[32] J. F. Murray, G. F. Hughes, and K. Kreutz-Delgado. Machine learning
methods for predicting failures in hard drives: A multiple-instance
application. Journal of Machine Learning Research, 6(May):783–816,
2005.

[33] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel. Deep learning for
anomaly detection: A review. ACM Computing Surveys, 54(2):1–38,
2021.

[34] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. PyTorch: An
imperative style, high-performance deep learning library. Proc. of
NeurIPS, 2019.

[35] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends in a large
disk drive population. In Proc. of USENIX FAST, 2007.

[36] A. Sandur, C. Park, S. Volos, G. Agha, and M. Jeon. Jarvis: Large-scale
server monitoring with adaptive near-data processing. In Proc. of IEEE
ICDE, 2022.

[37] C. Shen, Q. Ouyang, F. Li, Z. Liu, L. Zhu, Y. Zou, Q. Su, T. Yu, Y. Yi,
J. Hu, et al. Lindorm TSDB: A cloud-native time-series database for
large-scale monitoring systems. In Proc. of the VLDB Endowment, 2023.

[38] X. Sun, K. Chakrabarty, R. Huang, Y. Chen, B. Zhao, H. Cao, Y. Han,
X. Liang, and L. Jiang. System-level hardware failure prediction using
deep learning. In Proc. ACM/IEEE DAC, 2019.

[39] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham, et al. Storm@ twitter. In
Proc. of ACM SIGMOD, 2014.

[40] J. Wei, G. Zhang, Y. Wang, Z. Liu, Z. Zhu, J. Chen, T. Sun, and Q. Zhou.
On the feasibility of parser-based log compression in large-scale cloud
systems. In Proc. of USENIX FAST, 2021.

[41] J. Xiao, Z. Xiong, S. Wu, Y. Yi, H. Jin, and K. Hu. Disk failure
prediction in data centers via online learning. In Proc. of ACM ICPP,
2018.

[42] C. Xu, G. Wang, X. Liu, D. Guo, and T.-Y. Liu. Health status assessment
and failure prediction for hard drives with recurrent neural networks.
IEEE Trans. on Computers, 65:3502–3508, 2016.

[43] F. Xu, S. Han, P. P. C. Lee, Y. Liu, C. He, and J. Liu. General feature
selection for failure prediction in large-scale SSD deployment. In Proc.
of IEEE/IFIP DSN, 2021.

[44] Y. Xu, K. Sui, R. Yao, H. Zhang, Q. Lin, Y. Dang, P. Li, K. Jiang,
W. Zhang, J.-G. Lou, et al. Improving service availability of cloud
systems by predicting disk error. In Proc. of USENIX ATC, 2018.

[45] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. In Proc. of USENIX
HotCloud, 2010.

[46] J. Zhang, P. Huang, K. Zhou, M. Xie, and S. Schelter. HDDse: Enabling
high-dimensional disk state embedding for generic failure detection
system of heterogeneous disks in large data centers. In Proc. of USENIX
ATC, 2020.

[47] J. Zhang, J. Wang, L. He, Z. Li, and S. Y. Philip. Layerwise perturbation-
based adversarial training for hard drive health degree prediction. In
Proc. of IEEE ICDM, 2018.

[48] Y. Zhang, W. Hao, B. Niu, K. Liu, S. Wang, N. Liu, X. He, Y. Gwon,
and C. Koh. Multi-view feature-based SSD failure prediction: What,
when, and why. In Proc. of USENIX FAST, 2023.

[49] Y. Zhao, X. Liu, S. Gan, and W. Zheng. Predicting disk failures with
HMM-and HSMM-based approaches. In Proc. of IEEE ICDM, 2010.

[50] B. Zhu, G. Wang, X. Liu, D. Hu, S. Lin, and J. Ma. Proactive drive
failure prediction for large scale storage systems. In Proc. of IEEE
MSST, 2013.

