
TraceGen: A Block-level Storage System Performance Evaluation Tool
for Analyzing and Generating I/O Traces

Cheng Li1, Jiahe Wei1, Huiru Xie1, Jinjiang Wang1, Xiaonan Zhao1,2,3, Shujie Han1,2,3, and Xiao Zhang1,2,3
1School of Computer Science, Northwestern Polytechnical University

2MIIT Key Laboratory of Big Data Storage and Management
3National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology

Abstract—Performance measurement is essential for detecting
potential performance issues and guiding optimization efforts.
However, acquiring I/O traces of real applications can be
costly in production environments. Also, existing performance
measurement tools, such as FIO and Iometer, often oversim-
plify real-world application characteristics. In this paper, we
introduce TRACEGEN, a block-level performance measurement
tool for storage systems that consists of a trace analyzer and
a trace generator. The trace analyzer produces two categories
of traces: (i) new traces with specified characteristics designed
to accurately simulate a range of applications, and (ii) extended
traces that maintain similar workload characteristics to the input
traces, thereby improving measurement accuracy during trace
replay. We evaluate TRACEGEN using traces from an enterprise
production environment and demonstrate its capability to gen-
erate new traces with an error margin of less than 1%.

Index Terms—performance measurement tools, simulate
workloads, I/O trace analysis and generation

I. INTRODUCTION

Measuring the I/O performance is crucial for optimizing
storage systems. To mirror the workloads of real-world appli-
cations, I/O traces are collected from storage systems. Such
I/O traces are replayed using simulation tools like btreplay
[1] and hfplayer [9] to accurately reproduce system pressures
with precise performance measurements [8], [14], [23], [25].

However, capturing I/O traces from real-world applications
faces several challenges [23]. First, confidentiality concerns
restrict the trace collection from real-world storage systems.
Second, gathering traces in systems with complicated archi-
tectures imposes significant overhead, potentially degrading
system performance during the collection process [13]. Third,
accurately and timely collecting a sequence of I/O operations
is challenging, especially in high-throughput production envi-
ronments, where even a small latency of collection can result
in substantial discrepancies. Finally, I/O traces captured in one
production environment may not accurately represent work-
loads in another, limiting their generalizability and usefulness
for broader performance measurements.

To efficiently measure storage system performance, various
tools such as FIO [3], Iometer [4], and IOzone [5] have been
developed. These tools can simulate a range of workloads,
including random and sequential read/write operations with
different request sizes. However, they are limited to generating
simple and stable workloads, making it challenging to repro-
duce the complexity and diversity of real-world scenarios.
Additionally, these tools do not support fine-grained I/O

construction with granularity finer than one second, which
compromises the accuracy of performance measurements.

To address these issues, we design and implement TRACE-
GEN, a trace generation tool in the block level. TRACEGEN
consists of two main components: a trace analyzer and a
trace generator. The trace analyzer independently analyzes the
workload characteristics of traces, while the trace generator
relies on the trace analyzer’s output to generate new traces.
Based on the trace characterization, TRACEGEN generates I/O
traces of two types: (i) new traces with specified characteris-
tics and (ii) long traces with similar characteristics to the input
trace. To summarize, the key contributions are as follows:
• We characterize two block-level I/O traces in a production

environment from one of the largest cloud companies in
China, including the access range, request size distribution,
block access popularity, and IOPS across fixed-size time
slices. Moreover, we investigate the access patterns of
traces including repeated access patterns, sequential access
patterns, and random access.

• Based on our trace characterization, we present a complete
design of TRACEGEN, a trace generator tool, which com-
prises the trace analyzer and trace generator. It supports
two types of trace generation, including a new trace with
specified characteristics and a long trace with similar char-
acteristics to the input trace.

• We implement a complete prototype of TRACEGEN from
scratch using Python libraries.

• We evaluate the effectiveness of TRACEGEN for generating
a new trace with specified characteristics and a long trace
with similar characteristics to the input trace with a small
error of less than 1%.

II. DATASET

In this section, we introduce our dataset, including the data
collection and trace format.
Data collection. We collected block-level I/O traces in a
production environment from one of the largest cloud com-
panies in China. The I/O traces are captured by blktrace
[1], which is a tool used for tracing and analyzing Linux
block device I/O operations. Table I shows an overview
of our dataset. Specifically, our dataset covers two traces,
denoted by Trace-A and Trace-B. Both traces include more
than 500 million rows with a size of more than 16 GiB. We
refer to each row in traces as the record and the row index as
the record index. Trace-B has a longer duration (12.5 hours)



Trace name Rows Size Duration SSD capacity Write ratio
Trace-A 540 million 16.5 GiB 3 hours 8 TiB 46.94%
Trace-B 520 million 16.7 GiB 12.5 hours 4 TiB 77.99%

TABLE I: Basic information of traces.

Timestamp Type Start offset Request size End offset
1813 R 8473419632 144 8473419776
1843 W 7811028032 80 7811028112
1902 R 7058082960 8 7058082968
1934 R 5728177408 8 5728177416
1963 W 6641393664 16 6641393680

TABLE II: An example of trace content.

than Trace-A (3 hours) due to less frequent operations. Both
traces are collected from solid-state drives (SSDs) but from
different applications. The ratio of write requests for Trace-A
is 46.94%, while for Trace-B it is 77.99%.
Trace format. As shown in Table II, Trace-A and Trace-
B share the same trace format, including the timestamp,
type, start offset, request size, and end offset. The timestamp
indicates the time point (in the microsecond level) that an
I/O request is placed into the request queue of the underlying
device. For privacy, we anonymize the exact timestamps to
relative timestamps from the first record starting from zero.
The type indicates the type of an I/O request type, e.g., read or
write (denoted by “R” or “W”, respectively). The start offset
refers to the start of the logical block address (LBA) of an
I/O request for addressing a sector with a size of 512 bytes.
The request size refers to the number of sectors (with the
size of 512 bytes) that are accessed by the I/O request. The
end offset refers to the end of LBA of an I/O request, which
equals the start offset plus the request size of the I/O request.

III. CHARACTERIZATION OF TRACES

In this section, we first present the characteristics of traces
and then analyze the access patterns of traces.

A. Trace Characteristics

We examine the characteristics based on the entire traces,
including the access range, request size distributions, block
access popularity, and IOPS.
Access range. The access range refers to the minimum start
offset and maximum end offset of a trace. Table III shows
the access ranges of Trace-A and Trace-B. The minimum
start offset and maximum end offset for Trace-A (Trace-
B) are 2048 sectors (0) and around 7.64 TiB (2.91 TiB),
respectively. The maximum end offsets are consistently within
SSD capacities (Table I). As the maximum end offset for
Trace-A is close to its SSD capacity and the data is generally
stored contiguously (see Figure 2), it indicates the SSD in
Trace-A is almost full.
Request size distribution. To examine the request size
distribution, we divide request sizes into several buckets, each
corresponding to a power of 2 KiB starting from 4 KiB. The
last bucket includes all sizes greater than 64 KiB. Figure 1
shows the ratio of request sizes with different buckets for both
traces. For read requests, the small requests less than or equal
to 8 KiB for Trace-A account for the majority, i.e., 83.98%,

Trace name Min start offset (sector) Max end offset (sector)
Trace-A 2048 16499650560 (≈ 7.68 TiB)
Trace-B 0 6250000000 (≈ 2.91 TiB)

TABLE III: The access ranges of Trace-A and Trace-B.
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Fig. 1: The request size distribution of Trace-A and Trace-B.

while the large requests greater than 64 KiB for Trace-B
account for the majority, i.e., 98.21%. For write requests,
Trace-A includes both small (between 4 KiB and 8 KiB) and
large (between 32 KiB and 64 KiB) requests, accounting for
45.49% and 36.03%, respectively, while the large requests
greater than 64 KiB for Trace-B still account for a large
fraction, i.e., 91.57%. The difference of read request sizes for
Trace-A and Trace-B depends on the upper-level applications.
Block access popularity. We divide the disk capacity into
a sequence of fixed-sized blocks (e.g., 100 GiB) and count
the number of accesses to each block. Figure 2 shows the
block access popularity of Trace-A and Trace-B. Recall that
the capacities of SSDs for Trace-A and Trace-B are 8 TiB and
4 TiB, respectively. Thus, the access range of Trace-A is larger
than that of Trace-B. We observe that the accesses in Trace-A
are nearly even but not continuous. In contrast, the accesses
in Trace-B are continuous but the number of accesses varies
significantly across blocks.
IOPS. To further understand the workload characteristics, we
segment the traces into fixed-size time slices (e.g., 10 ms) and
examine the number of I/O operations per second (IOPS) over
time slices. For the convenience of presentation, we uniformly
sample 500 time slices. Figure 3 shows that Trace-A includes
a balanced workload of read and write IOPS, while Trace-B
records a write-intensive workload. The peak and average read
IOPS of Trace-A slightly surpass the write IOPS, while both
the peak and average read IOPS of Trace-B are significantly
lower than the write IOPS.

B. Access Patterns

We next examine access patterns, referring to the sequence
of data access. Access patterns are typically divided into two
types: (i) sequential access, where data blocks are accessed
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Fig. 2: The block access popularity of Trace-A and Trace-B.
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Fig. 3: The IOPS sequences of Trace-A and Trace-B.

in a specific order, and (ii) random access, where data blocks
are accessed without a predictable order. To provide an in-
depth analysis of access patterns, we consider the following
four categories of access patterns.

• Repeated access pattern. It is referred to as a sequence of
records with the same start offset and request size.

• Strict sequential access pattern. It is referred to as a
sequence of records with contiguous accessing addresses,
where the start offset of the following record equals the end
offset of the preceding record.

• Jumping sequential access pattern. It is referred to as
a sequence of records with nearly contiguous accessing
addresses, i.e., a small gap between the end offset of the
preceding record and the start offset of the following record
within a threshold (denoted by δ).

• Random access pattern. Any access that does not fall into
the above three categories is considered as random access.

We define some notations to capture the spatial and tem-
poral characteristics of the first three categories of access
patterns. Let α denote the minimum threshold for the total
amount of accessed data, ensuring that a sufficient volume of
data is considered. Also, let β denote the maximum threshold
of the difference in record indices between two adjacent
records within a specific access1, ensuring that the accesses
occur within a short time frame.

1Two records that are accessed consecutively in a specific access pattern
may not appear adjacent in the traces, as there may be other intervening
requests between them.

Record index Timestamp Type Start offset Request size End offset
1 23886837 W 512 8 520
2 23886869 W 524 8 532
6 23886934 W 532 8 540
10 23887081 W 544 8 552
12 23887110 W 560 8 568

TABLE IV: Example of jumping sequential access.

Table IV shows an example of a jumping sequential access
by setting α = 40 sectors, β = 5, and δ = 8 sectors. The
end offset of the first record is 520 (i.e., start offset +
request size = 512 + 8 = 520). The gap between the end
offset of the first record and the start offset of the second
is 524 − 520 = 4, which is less than δ. The total number
of accessed data is 5 records × request size = 5 × 8 = 40,
which is equal to α. Also, the differences between each pair
of adjacent records are less than β.
Calculation methodology. The repeated access pattern can be
easily identified by analyzing the start offset and request size
when traversing the traces. In contrast, to detect sequential
access patterns (strict or jumping), we formulate the problem
as a directed acyclic graph (DAG). At a high level, each vertex
represents a unique record, and the edges among vertices
describe that such records satisfy the condition of (strict or
jumping) sequential access pattern. Let vi (i ≥ 0) be a vertex
representing the record i, where i is the record index. Let ei,j
(i, j ≥ 0) be a directed edge from vi to vj indicating that
the end offset of vi is less than the start offset of vj within
δ, where δ = 0 for the strict sequential access pattern. Also,
each edge is associated with a weight (denoted by wi,j) to
represent the gap between the end offset of vi to the start
offset of vj , where 0 ≤ wi,j ≤ δ.
Access pattern analysis. Given that our traces include over
500 million records (Section II), analyzing the entire traces is
time-consuming. Thus, we select the first 10 million records
for each trace. We then divide the traces into non-overlapping
blocks, each containing 50,000 records, to enable parallel
processing for analyzing I/O patterns. By default, we set α as
1024 sectors, β as 200, and δ as 128 sectors. For each block,
we construct a DAG to investigate the access patterns. Note
that access patterns at the beginning of subsequent blocks
may overlap with those at the end of preceding blocks, as they
would belong to the same paths if the blocks were not divided.
However, these overlaps are negligible in our analysis.

Table V shows the overall statistics of access patterns in
the traces. We analyze the path count, average path length,
and total number of records for each type of access pattern,
excluding random access patterns. For random access pat-
terns, we only report the total number of records for random
access patterns as they do not form distinct paths. There are
no repeated access patterns in either trace for both reads and
writes. For sequential accesses, Trace-A includes only jump-
ing sequential reads and strict sequential writes, suggesting
the presence of fragments after the garbage collection (as
known as the fragmentation issue [19]). In contrast, Trace-B,
being write-intensive (Section III-A), contains no sequential
reads but both strict and jumping sequential writes. Moreover,



Types Categories Metrics Trace-A Trace-B

Read

Repeated
access pattern

# paths 0 0
Avg. path length 0 0

# records 0 0
Strict
sequential
access pattern

# paths 0 0
Avg. path length 0 0

# records 0 0
Jumping
sequential
access pattern

# paths 692 0
Avg. path length 32 0

# records 21,992 0
Random access # records 5,210,423 1,508

Write

Repeated
access pattern

# paths 0 0
Avg. path length 0 0

# records 0 0
Strict
sequential
access pattern

# paths 1,988 43,313
Avg. path length 22 29

# records 43,409 1,258,842
Jumping
sequential
access pattern

# paths 0 7,139
Avg. path length 0 51

# records 0 362,778
Random access # records 4,724,176 8,376,872

TABLE V: Overall statistics of access patterns in traces.
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Fig. 4: Architectural overview of TRACEGEN.

strict sequential writes are more prevalent than jumping se-
quential writes, helping to minimize fragments, while the path
length of jumping sequential writes is longer than that of strict
sequential writes. Also, random access patterns dominate both
traces, maximizing SSD capacity utilization.

IV. TRACE GENERATOR

Based on the trace characterization (Section III), we design
a trace generator tool, named TRACEGEN, to generate a new
trace with the desired characteristics. Figure 4 provides an
architectural overview of TRACEGEN, which consists of two
components, trace analyzer and trace generator. The trace
analyzer takes the real-world trace as input and performs func-
tions to analyze trace characteristics and access patterns. The
trace generator produces two types of traces: (i) a new trace
configured to meet specified characteristics (Section IV-A),
and (ii) a new trace that retains similar characteristics to those
identified by the trace analyzer (Section IV-B).

A. Generating Traces with Specified Characteristics

To simulate the workload of various real-world appli-
cations, TRACEGEN supports three categories of workload
characteristic configurations: (i) access range, (ii) the request
size distribution, and (iii) IOPS. These configurations are
essential for several reasons: varying the access range enables
the simulation of application migration from an old storage
device to a new one; varying the request size distribution
and IOPS allow us to simulate different workloads of upper-
level applications and examine their impact on storage system
performance. In addition, TRACEGEN maintains the remain-
ing characteristics (i.e., block access popularity and access
patterns) similar to the input trace if they are not affected by
the above three configurations2.

To meet the specified characteristic requirements, TRACE-
GEN first samples records from the input trace and synthesizes
a new trace from these sampled records and the input trace.
Specifically, TRACEGEN divides the records in the input trace
into four sets (for read or write operations) based on the types
of access patterns: the repeated access set, strict sequential
access set, jumping sequential access set, and random access
set. It then selects records from each set according to the
specified characteristics. Next, we introduce how to generate
a new trace for each category of specified characteristics.
Access range. TRACEGEN generates a new trace by speci-
fying a new access range through remapping the start offset
of each record in the input trace to a new start offset. In
particular, it computes the access range of the input trace
(referred to as the old access range) via the trace analyzer. It
takes a new specified minimum start offset and a maximum
end offset as inputs, where their difference is the new access
range. The old access range is then scaled to the new access
range by a factor f , where f = length of new access range

length of old access range . For
the repeated access set and random access set, the new start
offset of each record is calculated by (old start offset −
old min start offset) · f + new min start offset. In con-
trast, to preserve the sequential access patterns, TRACE-
GEN calculates the new start offset for records in the strict
or jumping sequential access sets by old start offset −
old min start offset+new min start offset without scal-
ing. Note that we do not modify the request size for each
record. If the end offset of a record after remapping exceeds
the SSD capacity limit, TRACEGEN adjusts the start offset
of the record to ensure it remains within this limit by setting
it to new max end offset minus request size. The impact
of such adjustment is negligible on repeated and sequential
access patterns.
Request size distribution. TRACEGEN generates a new
trace with specifying the request size distribution through
modifying the request size of records. Recall in Section III-A
that we divide the requests into several buckets. The main
idea is to adjust request sizes in buckets so that those

2For example, configuring the access range may affect the block access
popularity and access patterns, while configuring a new read or write IOPS
may change all the remaining characteristics.



exceeding the specified proportion are reduced to sizes that
fall within the specified proportion. Specifically, TRACEGEN
first calculates the number of records that should be added
or removed in each bucket based on the desired request
size distribution. To maintain the integrity of repeated and
sequential access patterns, TRACEGEN randomly selects the
records only from the random access set in the bucket with
exceeding the required proportion, where the number of such
selected records equals the number of removed records in that
bucket. TRACEGEN modifies the request sizes of the selected
records to fall within the bucket whose proportion is below
the specified limit.
IOPS. TRACEGEN generates a new trace with specifying the
IOPS while adhering to two constraints. First, the IOPS in
each time slice (i.e., 10 ms) should align with the configured
value. Second, the access range and request size distribution
should match those in the input trace. Given that a new trace
is configured with increasing IOPS, TRACEGEN achieves this
by sampling records, appending the sampled records, redirect-
ing timestamps, and adjusting the request size distribution.

• Sampling records. TRACEGEN calculates the number of
records to be augmented. To maintain the proportion of each
category of access patterns, it samples records proportion-
ally from the four sets of access patterns, respectively. For
the random access set, TRACEGEN randomly selects the
records. For repeated and sequential access sets, it preserves
as many complete access patterns as possible. Initially, it
retains all records within an access pattern. If the number of
retained records exceeds the required number of augmented
records, it then retains the initial records up to the number
needed for augmentation.

• Appending sampled records. TRACEGEN concatenates the
four sampled sets of access patterns and resets the index of
the selected records, starting from the end of the input trace,
without shuffling the selected records across the sampled
sets of access patterns. It then appends the sampled records
to the end of the input trace.

• Redirecting timestamps. TRACEGEN redirects the times-
tamps for all records to meet the requirements of IOPS.
Given that the input trace contains t time slices. The
number of records covered in the j-th time slice is denoted
by Nj (j ≥ 1). Suppose that the required IOPS is x
times the IOPS of the input trace, where x ≥ 1. The
new trace should include x ·

∑t
j=1 Nj records, where the

first
∑t

j=1 Nj records are from the input trace and the
subsequent (x− 1) ·

∑t
j=1 Nj are sampled from the input

trace. TRACEGEN then modifies the timestamps in the j-
th time slice to the range between (x ·

∑j−1
k=1 Nk + 1) and

x ·
∑j

k=1 Nk, where k indexes the previous time slices and
N0 = 0 for initialization.

• Adjusting the request size. TRACEGEN examines whether
the request size distribution changes. If so, TRACEGEN
adjusts the request size distribution of the new trace to
match that of the input trace.

Suppose that a new trace is configured with decreasing

IOPS. Unlike the process for increasing IOPS, TRACEGEN
does not perform sampling records and appending sampled
records. Instead, the new trace includes the same number
of records as the input trace, but decreases the number of
IOPS via stretching the timestamps in each time slice of input
trace. In particular, it redirects timestamps for all records of
the input trace as follows. Still let x be the specified times
the IOPS of the input trace, where 0 < x < 1. TRACEGEN
modifies the timestamps in the j-th time slice to the range
between (round(x ·

∑j−1
k=1 Nk) + 1) and round(x ·

∑j
k=1 Nk).

By combining the configurations of trace characteristics,
TRACEGEN allows for the simultaneous specification of the
three categories of characteristics, enabling the simulation of
real-world workloads.

B. Generating Long Traces with Similar Characteristics

Replaying a sufficiently long I/O trace can effectively
simulate real-world workloads [13]. However, the complexity
and scale of production systems make the collection of ex-
tensive traces both time-consuming and resource-intensive. To
address this, TRACEGEN generates long traces based on the
existing traces by configuring the access range and number of
records while ensuring that characteristics such as the request
size distribution, mean IOPS, and access patterns closely align
with those of input trace.

The primary objective of generating extended traces from
an input trace is to predict a sequence of IOPS for the
near future. TRACEGEN begins by calculating the workload
characteristics of the input trace using the trace analyzer.
It then formulates the IOPS prediction as a time-series
regression problem, employing a long short-term memory
(LSTM) model [10] for this task. The LSTM is effective
in capturing long-term dependencies within the data and has
been successfully applied in various time-series forecasting
scenarios [6], [7], [20]. The model takes a sequence of
IOPS over time slices from the input trace as input, with
the output being a predicted sequence of IOPS for the
near future. TRACEGEN utilizes the limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm [26], a
quasi-Newton optimization method that uses limited memory
to preserve characteristics similar to those of the input trace.
It adjusts both the mean and root mean square error (RMSE)
of the new IOPS sequence, ensuring that the mean aligns
with that of the input trace to maintain consistent workload
intensity, while the RMSE remains similar to preserve the
fluctuation patterns. By configuring the IOPS based on the
new predicted sequence, TRACEGEN generates traces with
the specified IOPS (Section III-A).

C. Implementation Details

We implement a TRACEGEN prototype in Python with
around 7500 LoC including the trace analyzer and trace
generator. We realize the trace analyzer using Python li-
braries including Numpy [18], Pandas [17] PyQt [22] and
Matplotlib [24] to facilitate data analysis and visualization
tasks. Also, we realize the prediction model of LSTM [10] in



Trace name Min start offset (sector) Max end offset (sector)
Trace-A 2048 16499636272 (≈ 7.68 TiB)

Generated trace 8589934592 (= 4 TiB) 34359737217 (≈ 16 TiB)
Expected trace 8589934592 (= 4 TiB) 34359738368 (= 16 TiB)

Trace-B 0 6249988096 (≈ 2.91 TiB)
Generated trace 8589934592 (= 4 TiB) 34359738318 (≈ 16 TiB)
Expected trace 8589934592 (= 4 TiB) 34359738368 (= 16 TiB)

TABLE VI: Exp#1 (Effectiveness of generating a trace with speci-
fied access range).
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Fig. 5: Exp#2 (Effectiveness of generating a trace with specified
write request size distribution).

the trace generator using Darts [2]. In addition, we implement
the L-BFGS [26] algorithm using SciPy [12].

V. EVALUATION

In this section, we present trace-driven evaluation results
on the accuracy of trace generation of TRACEGEN. We
summarize our findings as follows.

• TRACEGEN generates a new trace with specifying the
access range (Exp#1), request size distribution (Exp#2), or
IOPS (Exp#3) with a small error of less than 1%.

• TRACEGEN also generates a long trace with similar char-
acteristics, where the error is less than 1% (Exp#4).

A. Methodology

We evaluate the effectiveness of TRACEGEN by comparing
the characteristics of the generated trace against the expected
trace. Specifically, we use the trace analyzer to calculate the
characteristics of the generated trace and then compare these
with those of the expected trace. Let ϵ represent the error of
a characteristic, with ŷj and yj denoting the j-th generated
and expected value of the characteristic, respectively. Let n
be the number of values compared, which varies depending
on the metric: it equals one for access range, the number
of request size buckets for request size distribution, or the
number of time slices for IOPS. The error of a characteristic
is calculated by ϵ = 1

n

∑n
j=1

|ŷj−yj |
yj

.
For our evaluations, we use both traces and select the first

10 million lines by default due to the memory constraints. We
set the default length of a time slice to 10 ms and the threshold
of ϵ as 1%, meaning that TRACEGEN is considered effective
if ϵ is below 1%. We conduct the evaluation on a machine
running Ubuntu 22.04, equipped with an 8-core 3.6 GHz Intel
Core i7-11700K processor, 32 GiB of RAM, and a 500 GB
Kingston NVMe SSD.
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Fig. 6: Exp#2 (Effectiveness of generating a trace with specified the
request size distribution). The validation of unchanged write IOPS.

Category of access patterns Trace-A Generated trace
Read jumping sequential access pattern 692 710

Write strict sequential access pattern 1,988 2,009
Category of access patterns Trace-B Generated trace

Write strict sequential access pattern 43,313 44,522
Write jumping sequential access pattern 7,139 7,268

TABLE VII: Exp#2 (Effectiveness of generating a trace with
specified request size distribution). The validation of the number
of paths in access patterns.

B. Results

Exp#1 (Effectiveness of generating a trace with specified
access range). Given that the specified access range is from
4 TiB to 16 TiB, we evaluate the effectiveness of generating a
new trace within this range. Table VI shows the access range
of input traces, generated traces and expected traces. The
minimum start offset and maximum end offset of generated
traces are 4 TiB and around 16 TiB, respectively. The differ-
ence between the generated trace and expected trace for the
minimum start offset is 0. In contrast, the maximum end offset
of the generated trace is smaller than that of the expected
trace by 50 and 1151 sectors based on Trace-A and Trace-
B, respectively, since the maximum end offset is within the
capacity limit. Also, other characteristics (i.e., the request size
distribution and IOPS) of the new trace remain unchanged.
Exp#2 (Effectiveness of generating a trace with specified
request size distribution). We increase the proportion of
write requests between 4 KiB and 8 KiB by 10% and between
32 KiB and 64 KiB by 5%. The proportion of other ranges
is adjusted proportionally. Figure 5 shows the write request
size distribution for the input trace, generated new trace,
and the expected request size distribution. The write request
size distributions of new traces are closely aligned with the
expected distributions, with the error ϵ less than 1%.

We also verify that other characteristics (i.e., write IOPS,
access patterns, and block access popularity) remain consis-
tent. Figure 6 shows that the distribution of write IOPS in the
generated traces matches that of the input traces. Table VII
shows that the numbers of paths for access patterns are
comparable between each pair of the input and generated
trace. Figure 7 shows the number of accesses in block access
popularity. For clarity, we limit the evaluation to the first
500 GiB of data, with each block sized at 50 GiB. Our obser-
vations confirm that the block access popularity distribution
of the generated trace aligns with that of the input trace.
Exp#3 (Effectiveness of generating a trace with specified
IOPS). Given that the read IOPS of the new trace are set to
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Fig. 7: Exp#2 (Effectiveness of generating a trace with specified
request size distribution). The validation of unchanged block access
popularity.
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Fig. 8: Exp#3 (Effectiveness of generating a trace with specified
IOPS). The validation of IOPS alignment between generated and
expected traces.

1.5 times that of the input trace and the write IOPS are set
to twice that of the input trace, we evaluate the effectiveness
of generating the trace under these IOPS conditions. Figure 8
shows that the read and write IOPS of the generated trace
closely align with the expected trace for both traces with an
error ϵ of nearly 0% (less than 1%). Since the read and write
operations of Trace-A are relatively balanced, the distribution
of read IOPS for Trace-A is similar to that of write IOPS. For
Trace-B, the read IOPS are nearly 0, except for the first time
slice, while the write IOPS in the generated trace generally
range from 3200 to 6400, which is twice the value of the
input trace, thus meeting the specified IOPS requirements.

We also verify that the other characteristics remain un-
changed. Figure 9 shows that the read and write request size
distributions in the new trace are aligned with those of input
traces, with an error ϵ of less than 1%. Since the additional
trace records in the new trace are derived from the input
trace, the access range of the new trace remains unchanged.
In addition, the number of paths of access patterns for the
generated trace are comparable with those for the input trace,
which we omit in plots due to the space limit.
Exp#4 (Effectiveness of generating a long trace with
similar characteristics). To evaluate the effectiveness of
TRACEGEN for generating long traces with similar charac-
teristics, we select the first 50 million lines of Trace-A as
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Fig. 9: Exp#3 (Effectiveness of generating a trace with specified
IOPS). The validation of unchanged request size distributions for
specified IOPS.
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Fig. 10: Exp#4 (Effectiveness of generating long traces with similar
characteristics). The IOPS sequences of input trace and generated
trace.

the input trace, which covers the records in the time span of
about 18 minutes. We configure TRACEGEN to generate an
additional of 27 minutes of trace and extend the input trace
to a new trace of 45 minutes. We also adjust the maximum
value of access range from 8 TiB to 16 TiB to simulate the
change in the capacity of the underlying storage medium. The
length of a time slice is set to one second.

We evaluate the effectiveness of generating a long trace
by examining its access range, request size distribution and
IOPS. First, the access range of the new trace aligns closely
with that of the input trace, with an error of nearly 0%. The
request size distribution of the new trace is also similar to the
input trace, with an error of 0.01% for both read and write
request distributions. Additionally, we verify the time span of
the new trace for IOPS. Figure 10 shows the read and write



Average read IOPS Average write IOPS
Input trace 23654 22410

Generated trace 23595 22374
Error 0.25% 0.16%

TABLE VIII: Exp#4 (Effectiveness of generating long traces with
similar characteristics). The average IOPS of input trace and gener-
ated trace.

IOPS of both the input and new traces across time slices. The
new trace spans 2,700 time slices, equivalent to a 45-minute
duration. Furthermore, Table VIII presents the average read
and write IOPS for both the input and new traces, revealing
a minimal error of less than 1% (specifically, 0.25% for read
IOPS and 0.16% for write IOPS).

VI. RELATED WORK

We review previous studies that are related to ours from
two aspects: workload measurement and trace generation.
Workload measurement. Existing workload measurement
tools mainly characterize the storage system performance.
Flexible I/O tester (FIO) [3] measures the performance of
file systems and block devices by performing a particular
type of I/O operations specified by users. IOZone [5] is a
benchmarking tool that measures and generates various file
operations. Iometer [4], developed by Intel, serves as an I/O
subsystem measurement and characterization tool for both
single and clustered systems. IOscope tracer [21] character-
izes I/O patterns through filtering-based profiling using fine-
grained criteria inside Linux kernel. Such measurement tools
generate various workloads, including random and sequential
read/write operations with different request sizes. However,
they cannot generate the workloads of real applications. In
contrast, TRACEGEN generates new traces based on existing
ones, resulting in more complex workloads with similar
characteristics to the real-world application workloads.
Trace generation. Prior studies generate traces based on
statistical approaches [13], [15], [16] and deep learning al-
gorithms [11]. TraceRAR [13] generates long traces based
on the correlation analysis between different characteristics.
ScalaIOExtrap [15], [16] extrapolates the trace data to a large-
scale cluster based on a mathematical model. Huang et al. [11]
generate traces with I/O-related characteristics (e.g., request
size and offset) and directory/file semantics (e.g., file path
and ID) based on Recurrent Neural Networks. The difference
between our work and the above studies is that TRACEGEN
generates both new traces with specified characteristics and
long traces with similar characteristics to the input traces
(instead of only extended traces).

VII. CONCLUSION

We present TRACEGEN, an evaluation tool for analyzing
and generating I/O traces for block-level storage systems.
Based on the trace characterization, it generates new traces
with specified characteristics and long traces with similar
characteristics. Our evaluation shows that TRACEGEN accu-
rately generates new traces in various configurations.
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